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Motivation

Controlling epidemic processes on networks is very important for many
applications:

1. computer networks security,
2. information/rumor spreading,
3. failures propagation,
4. etc



Motivation

Many techniques are studied to manage epidemics:

1. immunization,
2. quarantine,
3. anti-spyware
4. etc

Our first problem is to study individual protection strategies (investment)
against epidemics on a network architecture, from several perspectives:

1. users are selfish (protect themself),
2. positive externalities (by protecting himself, a node protects his

neighbor),
3. full description of the (equilibrium) protection strategy depending on

the network architecture (graph topology).



Motivation

A second problem is the design of an optimal network topology that
would be:
1. secure and resilient to viruses,
2. high performance.

The two objectives are conflicting.
Objectives and challenges:

1. design in a decentralized way (selfish agents)
2. what is the potential lost (e.g., PoA)?
3. different performance measures
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Virus-spread model

The probability of infection of any node depends on the (stochastic)
state of its neighbors. The Susceptible-Infected-Susceptible (SIS) model:

dvi (t)
dt = β (1− vi (t))

N∑
j=1

aijvj (t)− δvi (t) (1)

where
I vi (t) is the infection probability of node i at time t
I aij = 1 nodes i and j are directly connected and aij = 0, otherwise
I a node can infect its direct healthy neighbors with rate β
I a infected node can be cured at rate δ



Virus-spread model

Main interest
The infection probability vi∞ of node i in the metastable regime

0 = β (1− vi∞)
N∑

j=1
aijvj∞ − δvi∞

or re-written

vi∞ = 1− 1
1 + τ

∑N
j=1 aijvj∞

where
I τ = β

δ is called the effective infection rate.
I The epidemic threshold τc is defined as a value of τ , such that

vi∞ > 0 if τ > τc , and otherwise vi∞ = 0 for all i ∈ {1, 2, . . . ,N}
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Decentralized Protection

The infection probabilities could be substantially different after some
nodes decide to invest in a protection, causing those nodes not to be part
of the epidemic process (node and associated links disappear).

We consider different network interaction topologies:
I single community network: which could be regarded as a simple

social network or a wireless and other full mesh networks (e.g.,
MANETs),

I multi-communities network: composed of M cliques/communities all
interconnected to any other community by a core node.



Decentralized Protection

Complete graph: We consider a complete graph Kn with n nodes. By
symmetry, we have for each node i in a complete graph:

v.,∞(n) = vi,∞(n) =
{

1− 1
τ(n−1) , if τ ≥ 1

n−1 ,

0, otherwise.



Decentralized Protection
Multi-community graph: The core node functions as a bridge between
all communities: the M fully connected graphs are interconnected
through one common node. We obtain for ∀m = 1, 2, . . . ,M,

v (Nm)
∞ (nm, u∞) = 1− 1

1 + τm(nm − 1)v (Nm)
∞ + τmu∞

(2)

where v (Nm)
∞ is the metastable state infection probability for any non-core

node of community Nm and u∞ is the infection probability for the core
node.

N1

N2

N3



Individual protection strategy

In the investment game on the complete graph KN , each node is a player
and decides individually to invest in antivirus protection (protect himself).

I the investment cost is C ,
I the infection cost is H,
I If a player decides not to invest, his cost is a linear function of its

infection probability vi,∞(n) of node i in the metastable state of the
SIS process,i.e.

lim
T→∞

1
T

∫ T

0
E [Xi (n; t)]dt = vi,∞(n).

I The decisions of all the nodes induce an overlay graph only
composed of the nodes that have decided not to invest.



Individual protection strategy

We have several properties for our non-cooperative game.
I The payoff Si1 of a player i ∈ {1, 2, . . . ,N} which decides to invest

is defined by: Si1 = C := S1.
I The payoff of a player i which decides not to invest is:

Si0(n) = Hvi,∞(n) := S0(n).

I The payoff of a player depends on the number of players that choose
his action, then it is a congestion (potential) game.

I The game is potential, where Φ(n) = C(N − n) + H
∑n

k=2 v.,∞(k) is
the potential function of the game.
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Individual protection strategy: Complete graph

At a Nash equilibrium, no node has an interest to change unilaterally his
decision. The number n∗ of nodes that do not invest at a Nash
equilibrium is defined for any player i , by: Si1 ≤ Si0(n∗ + 1) and
Si0(n∗) ≤ Si1.

For the number of nodes n∗ that do not invest at equilibrium, the
following inequality holds:

v∞(n∗) ≤ C
H ≤ v∞(n∗ + 1).

Moreover, above the epidemic threshold (τ > 1
N−1 ), n

∗ is uniquely
defined by:

n∗ =

{
min

{
N, d 1

(1− C
H )τ
e
}
, if C < H

N, otherwise

where dxe is the closest integer greater or equal than x and N is the total
number of nodes.
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Individual protection strategy: Complete graph

We propose a simple fully decentralized Reinforcement Learning
Algorithm (RLA) that converges to a pure Nash Equilibrium in our invest
game.

I At each discrete time slot k, independently, each node i decides
whether to invest in antivirus protection.

I We denote by σ̄[k] = (σ1[k], . . . , σN [k]) the vector of pure actions of
all the nodes at time k.

I The pure action σi [k] of node i at time slot k is an element from
{0, 1}, where action 1 means node i invests and action 0 otherwise.

I The probability that node i invests at time slot k (i.e. σi [k] = 1) is
denoted by pi [k] = Pr[σi [k] = 1].



Individual protection strategy: Complete graph
1. Set an initial probability pi [0], for each user i ∈ {1, . . . ,N}.
2. At every time slot k, each node i invests with probability

pi [k] = Pr[σi [k] = 1], which determines its pure action σi [k].
3. Each player i has a negative utility (cost) Siσi [k](n[k]), which is

equal to:

Siσi [k](n[k]) =
{

C , if σi [k] = 1,
Hvi,∞(n[k]), otherwise.

where n[k] = N −
∑N

j=1 σj [k].

4. The cost of each node i is normalized: S̃iσi [k](n[k]) = Si,σi [k](n[k])
C+H .

5. Each node i updates its probability according to the following rule:

pi [k + 1]← pi [k] + b[k]S̃iσi [k](n[k])(σi [k]− pi [k]),

where b[k] is the learning rate.
6. Stop when a stopping criterion is met (for example, the maximum of

the differences between consecutive updates is smaller than a small
ε); else increase k by 1 and go to step 2).



Individual protection strategy: Complete graph
I Any potential game possesses a Lyapunov function F .
I The decentralized algorithm converges almost surely to a pure

(ε-)Nash equilibrium.
I The convergence time T ≤ O( F (σ[0])

ε ) only depends on ε and the
Lyapunov value F (σ[0]) of the initial strategy σ[0].

I The algorithm is simple and fully distributed, the only required
information for each node is its instantaneous cost at each time slot.
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Individual protection strategy: Multi-community graph

N1

N2

N3

Assuming that the infection probability u∞ of the core node is given, our
game with M communities is equivalent to M independent potential
games.

The infection probability v (Nm)
∞ of a non-core node in community

Nm depends only on nm (size of community Nm),

v (Nm)
∞ (nm, u∞) =

V (τm, nm, u∞)
(
1 +

√
1 + 4τ2

mu∞(nm−1)
V (τm,nm,u∞)

)
2τm(nm − 1) (3)

where V (τm, nm, u∞) = τm(nm − 1)− τmu∞ − 1. Then the equation:

u∞ = 1− 1
1 +

∑M
m=1 τmnmv (Nm)

∞
,

has a unique solution in (0, 1).
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Individual protection strategy: Multi-community graph
Iterative heuristic procedure to compute a pure Nash equilibrium of this
parametric potential game:
1. Fixed an initial value for u∞[0].

2. Based on this value, we solve the M independent potential games
and we obtain the solution vector
n∗(u∞[k]) = (n∗1(u∞[k]), . . . , n∗M(u∞[k])). We denote for each
community Nm, the following parametric potential function:
Φm(nm,Nm, u∞[k]) = C(Nm − nm) + H

∑nm
i=2 v

(Nm)
∞ (i , u∞[k]).

Hence, n∗m(u∞[k]) = argminnm Φm(nm,Nm, u∞[k]) for all m.
3. Further, we compute the infection probability of a node from

community m by the function v (Nm)
∞ (n∗m(u∞[k]), u∞[k])[k] from

equation (3).
4. We update the infection probability of the core node:

u∞[k + 1] = 1− 1
1+
∑M

m=1
τmn∗m(u∞[k])v (Nm)

∞ (n∗m(u∞[k]),u∞[k])[k]
.

5. Stop if | u∞[k + 1]− u∞[k] |< ε and thus u∞ = u∞[k + 1],
otherwise increase k ← k + 1 and start with step 2).
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Individual protection strategy: Multi-community graph
We consider an example with M = 2 communities with N1 = 10,
N2 = 15, τ1 = 0.5 and τ2 = 1.5. Second, we consider the following
stopping criteria ε = 10−7 and we observe that the number of iterations
to achieve an equilibrium is very small (8 iterations).
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Game-formation model

The game model is defined by the following:
I Player i (a node) aims to minimize its own cost function Ji

I The global social cost J is defined as J =
∑N

i=1 Ji

I Goal: existence and characterization of (pure) Nash Equilibria
I Efficiency versus the global optimum

PoA = J(worst NE)
min J , PoS = J(best NE)

min J



Game-formation model

Virus Spread-Cost (VSC) network formation game.
Each node determines the links with other nodes. The utility Ji of player
i is a weighted sum:

I the infection probability vi∞,
I and the cost αki of all the links that i installs.

Condition: Player i should be able to reach all the nodes in the network.

The utility of player i is given by:

Ji =
{
α · ki + vi∞, if i can reach all the nodes,
∞, otherwise.



Results

Virus Spread-Cost (VSC). The social cost J for the whole network is:

J = α

N∑
i=1

ki +
N∑

i=1
vi∞ = αL +

N∑
i=1

vi∞

if the graph is connected, otherwise J =∞, where
I L =

∑N
i=1 ki is the number of links in the network

Lemma
The infection probability vi∞(G) of each node i in the metastable state
in network G is not bigger than the infection probability vi∞(G + l) of
node i in the metastable state in network G + l obtained by adding a link
l to G.

Proof.
Based on the canonical form of vi∞.



Results

Virus Spread-Cost (VSC). We look for the possible Nash Equilibria.

Theorem
If a Nash Equilibrium is achieved, then the constructed graph is a tree.

Proof.
By contradiction.

Observation
A Nash Equilibrium is achieved for both the star graph and the path
graph, but not all trees are Nash Equilibria.

Proof.
"In both directions" for the star graph and the path, and by counter
examples for other trees.



Results
Theorem
For low values of the effective infection rate τ ≤ τc(K1,N−1), the social
cost J(T ) = α(N − 1) for any tree T . For values of the epidemic
threshold τc(K1,N−1) < τ ≤ τc(PN), the social cost
J(T ) > J(PN) = α(N − 1) for any tree T .

Proof.
Using a spectral approach and the result of [Lovász and Pelikán,
1973].

Observation
There are values of τ such that worst- and best-case Nash Equilibria are
achieved for trees different from star K1,N−1 and path PN .

Proof.

p p

p

p

The example is in the figure. For τ ∈ [1.475, 1.589], the tree is the
best-case Nash Equilibrium and has optimal social cost.



Results

Virus Spread-Cost (VSC).

Corollary
For both high and low effective infection rate , PoS = 1 and
PoA = max{ J(PN )

J(K1,N−1) ,
J(K1,N−1)

J(PN ) }.

Corollary
For sufficiently high effective infection rate τ , in the virus spread-cost
game formation,

PoA < 1 + 1
2
(
τ(α + 1)− 1

) ,
where τ(α + 1) > 1.



Results
Virus Spread-Cost (VSC).
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(a) N = 10.
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(b) N = 1000.

Figure: The Price of Anarchy (PoA). The value of N does not influence much,
although higher N, in Figure 1b, implies more noticeable difference for various
α. Dotted lines represent the bound from Corollary 5.



Results

Pairwise Nash Equilibrium (A PNE exists if and only if there is an interest
of both nodes for having a link between them) and pairwise stability (The
pairwise stability determines if each player is robust to one-link
deviations, not necessarily installed by him, from a unilateral move).

Theorem
In the VSC game, a Nash Equilibrium implies pairwise stability and a
Nash Equilibrium is equivalent to a pairwise Nash Equilibrium.
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Conclusions

Decentralized Protection Strategies (DPS).
I Interaction structure defines the playground of a game.
I The network is also the support of an epidemic process.
I Complete description of the pure Nash equilibrium.
I Extension of the potential game concept for multicommunity graphs.
I Description of RLA that converges to the pure Nash equilibrium.



Conclusions

Virus Spread-Cost (VSC).
I We find that a Nash Equilibrium always exists and is a tree,

although not any tree is a Nash Equilibrium. The tree that is the
worst-case Nash Equilibrium depends on the effective infection rate.

I A Nash Equilibrium in this game is shown to be pairwise stable
[Myerson91]

I For high effective infection rate τ , the Price of Anarchy (PoA) in the
VSC game is generally close to 1, independent from the number of
hosts, and is inversely proportional to the virus infection rate and
the link installation cost. This implies that non-cooperative players
still form a close-to-optimal topology for high τ .

I On the other hand, PoA may be very high for small effective
infection rate τ and/or small installation cost.

I Future work: mixed Equilibria, player coalitions, inhomogeneous
costs weights, time-varying networks ...



Questions?
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