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Topics on strategic learning I:

Unilateral procedures
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Presentation

Framework: agent acting in discrete time and facing an
unknown environment.
At each stage n:
Choice: kn in a finite set K
Observation: reward vector Un ∈ U = [−1,1]K

Payoff: the k th
n component, ωn = Ukn

n .
History at stage n: hn−1 = {k1,U1, ..., kn−1,Un−1} ∈ Hn−1.
A strategy of the player is a map σ from H = ∪+∞

m=0Hm to ∆(K )
(set of probabilities on K ).
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External regret

The (external) regret given k ∈ K and U ∈ U ⊂ IRK is the vector
R(k ,U) ∈ IRK defined by:

R(k ,U)` = U` − Uk , ` ∈ K .

Regret at stage n = Rn = R(kn,Un):

R`
n = U`

n − ωn, ` ∈ K .

Average regret vector at stage n, Rn = 1
n
∑n

m=1 Rm:

R
`
n = U

`
n − ωn, ` ∈ K .

Compare the actual (average) payoff to the payoff
corresponding to the choice of a constant component,
see Hannan (1957), Foster and Vohra (1999), Fudenberg and
Levine (1995).
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Definition
A strategy σ satisfies external consistency (or exhibits no
external regret) if, for every process {Um} ∈ U :

max
k∈K

[R
k
n]+ −→ 0 a.s., as n→ +∞

or, equivalently
∑n

m=1(Uk
m − ωm) ≤ o(n), ∀k ∈ K .
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Internal regret

The internal regret given (k ,U) is the K × K matrix S(k ,U)
with components: Sj`(k ,U) = (U` − U j) I{j=k}.
The evaluation at stage n is Sn = S(kn,Un) so that:

Sk`
n =

{
U`

n − Uk
n for k = kn

0 otherwise.

Average internal regret matrix:

S
k`
n =

1
n

n∑
m=1,km=k

(U`
m − Uk

m)

Comparison for each component k , of the average payoff
obtained on the dates where k was played, to the payoff for an
alternative choice `.
See Foster and Vohra (1999), Fudenberg and Levine (1999).
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Definition
A strategy σ satisfies internal consistency (or exhibits no
internal regret) if, for every process {Um} ∈ U and every couple
k , `:

[S
k`
n ]+ −→ 0 a.s., as n→ +∞
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The proof of existence of a strategy satisfying EC or IC will rely
on approachability theory
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Deterministic approachability: geometry

All the results are due to Blackwell (1956).

We describe the basic geometric principle that sustains the
approachability property.

x1, x2, ... is a sequence in IRK , uniformly bounded: ‖xn‖2 ≤ L.
xn the average of the first n elements in the sequence:
xn = 1

n
∑n

m=1 xm.

Given C ⊂ IRK closed, ΠC(x) is a closest point to x in C.
(If C is convex, it is the projection of x on C.)
d(x ,C) = ‖x − ΠC(x)‖ is the distance from x to C.
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Theorem (The geometric principle)

Suppose that {xn} satisfies:

〈xn+1 − ΠC(xn), xn − ΠC(xn)〉 ≤ 0, (1)

then d(xn,C) converges to 0.

Proof
Let yn = ΠC(xn) and d2

n = ‖xn − yn‖2. Then:

d2
n+1 = ‖xn+1 − yn+1‖2

≤ ‖xn+1 − yn‖2

= ‖ 1
n + 1

(xn+1 − yn) +
n

n + 1
( xn − yn)‖2

= (
1

n + 1
)2‖xn+1 − yn‖2 + (

n
n + 1

)2‖xn − yn‖2

+2
n

(n + 1)2 〈xn+1 − yn, xn − yn〉
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Since ‖xn+1 − yn‖2 ≤ 4L, we obtain:

d2
n+1 ≤ (

n
n + 1

)2d2
n + (

1
n + 1

)2 4L (2)

so that, by induction:

d2
n ≤

4L
n
.
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Approachability

The framework is as follows:
A is a I×J matrix with coefficients in IRK .
At each stage n, Player 1 (resp. Player 2) chooses a move in in
I (resp. jn in J).
The corresponding vector payoff, gn = Ain jn ∈ IRK is then
announced.
gn = 1

n [
∑n

m=1gm]
L = maxi∈I,j∈J,k∈K |Ak

ij |.
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Definitions
A set C in IRK is approachable by Player 1 if for any ε > 0 there
exists a strategy σ and N such that, for any strategy τ of Player
2 and any n ≥ N:

Eσ,τ (dn) ≤ ε

where dn is the euclidean distance d(gn,C).
A set C in IRK is excludable by Player 1 if for some δ > 0, the
set Cc

δ = {z; d(z,C) ≥ δ} is approachable by him.

Given x in X = ∆(I), define [xA] = co {
∑

i xiAij ; j∈J}, and
similarly [Ay ], for y in Y = ∆(J).
If Player 1 uses x , his expected payoff will be in [xA], whatever
being the move of player 2.
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B-sets and sufficient condition

Definition
A closed set C in IRK is a B-set for Player 1 if:
for any z /∈C, there exists a closest point w = w(z) in C to z
and a mixed move x = x(z) in X , such that the hyperplane
trough w orthogonal to the segment [wz] separates z from [xA].

〈z − w ,u − w〉 ≤ 0, ∀u ∈ [xA].
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Theorem
Let C be a B-set for Player 1.
Then C is approachable by that player.
Explicitly, a strategy satisfying σ(hn+1) = x(gn), whenever
gn /∈C, gives:

Eστ (dn) ≤ 2L√
n
, ∀τ

and dn converges Pστ a.s. to 0, more precisely:

P(∃n ≥ N; d2
n ≥ ε) ≤ 8L

εN

Proof
Let Player 1 use a strategy σ as above. Denote wn = w(gn).
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The property of x(gn) implies that:

〈E(gn+1|hn)− wn,gn − wn〉) ≤ 0

since E(gn+1|hn) belongs to [x(gn)A].
Hence the previous equation in the deterministic case:

d2
n+1 ≤ (

n
n + 1

)2 d2
n + (

1
n + 1

)2‖xn+1 − yn‖2,

gives here by taking conditional expectation with respect to the
history hn:

E(d2
n+1|hn) ≤ (

n
n + 1

)2 d2
n + (

1
n + 1

)24L (3)
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So that we obtain, like in (2):

E(d2
n+1) ≤ (

n
n + 1

)2 E(d2
n ) + (

1
n + 1

)2 4L

and by induction:

E(d2
n ) ≤ 4L

n
.

This gives in particular the convergence in probability of dn to 0.
Let Wn = d2

n + 4L
∑∞

m=n+1
1

m2 . Then from (3):

E(Wn+1|hn) ≤Wn

thus Wn is a positive supermartingale hence converges P a.s.
to 0. More precisely Doob’s maximal inequality gives :

P(∃n ≥ N; d2
n ≥ ε) ≤ E(WN)

ε
≤ 8L
εN

.
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In particular one obtains:

Corollary

For any x in S, [xA] is approachable by Player 1, with the
constant strategy x.

It follows that a necessary condition for a set C to be
approachable by Player 1 is that for any y in Y , [Ay ] ∩C 6=∅,
otherwise C would be excludable by Player 2, by playing y i.i.d.

In fact this condition is also sufficient for convex sets.
This provides a simple criteria for approachability of convex
sets.
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Convex case

Theorem

Assume C closed and convex in IRK .
C is a B-set for Player 1 iff

(∗) [Ay ]∩ C 6= ∅, ∀y ∈ Y .

In particular a set is approachable iff it is a B-set.

The proof follows from the minmax theorem.
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Approachability implies EC

The on-line decision problem with choice set K defines a game
where the vector payoff is the regret in IRK .
We prove the existence of a strategy satisfying EC by showing
that the negative orthant D = IRK

− is approachable by the
sequence of average regret {Rn}.

Lemma
∀x ∈ ∆(K ), ∀U ∈ U :

〈x ,Ex [R(.,U)]〉 = 0.

Proof

Ex [R(.,U)] =
∑
k∈K

xk R(k ,U) =
∑
k∈K

xk (U − Uk1) = U − 〈x ,U〉1

(1 is the K -vector of ones), thus 〈x ,Ex [R(.,U)]〉 = 0.
Sylvain Sorin
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Rn is the average regret at stage n, R
+
n the non negative

components.
Define, if R

+
n 6= 0, σ(hn) to be proportional to this vector.

Claim
〈E(Rn+1|hn)− ΠD(Rn),Rn − ΠD(Rn)〉 = 0

i) 〈ΠD(Rn),Rn − ΠD(Rn)〉 = 0
ii)

〈E(Rn+1|hn),Rn − ΠD(Rn)〉 = 〈E(Rn+1|hn),R
+
n 〉

÷ 〈E(Rn+1|hn), σ(hn)〉
= 〈Ex [R(.,Un+1)], x〉, for x = σ(hn)
= 0

Thus the B condition is satisfied, so D is approachable hence
d(Rn, IRK

−) goes to 0 and maxk∈K [R
k
n]+ −→ 0.
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Approachability implies IC

Given a K × K real matrix A with nonnegative coefficients, let
Inv [A] be the non-empty set of invariant measures for A,
namely vectors µ ∈ ∆(K ) satisfying:∑

k∈K

µkAk` = µ`
∑
k∈K

A`k ∀` ∈ K .

(The existence follows from the existence of an invariant
measure for a Markov chain - which is itself a consequence of
the minmax theorem).
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Lemma

Given A ∈ IRK 2

+ , let µ ∈ Inv [A] then:

〈A,Eµ(S(.,U))〉 = 0, ∀U ∈ U .

Proof
〈A,Eµ(S(.,U))〉 =

∑
k ,`

Ak`µk (U` − Uk )

and the coefficient of each U` is∑
k∈K

µkAk` − µ`
∑
k∈K

A`k = 0
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To prove the existence of a strategy satisfying internal
consistency, we show that ∆ = IRK×K

− is approachable by the
sequence of internal regret {Sn}.
Define, if A = S

+
n 6= 0, σ(hn) to be an invariant measure of A.

Claim:
〈E(Sn+1|hn)− Π∆(Sn),Sn − Π∆(Sn)〉 = 0

since again 〈Π∆(Sn),Sn − Π∆(Sn)〉 = 0 and

〈E(Sn+1|hn),Sn − Π∆(Sn)〉 = 〈E(Sn+1|hn),S
+
n 〉

= 〈E(Sn+1|hn),A〉
= 〈Eµ[S(.,Un+1)],A〉, for µ = σ(hn)
= 0

Thus ∆ is approachable, hence maxk ,`[S
k ,`
n ]+ −→ 0.
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Calibrating

Consider a sequence Xm with values in a finite set Ω that one
wants to predict.
Any deterministic prediction algorithm φm - where the loss is
measured by ‖Xm − φm‖ - will have a worst loss 1 and any
random predictor a loss at least 1/2 (take Xm = 1 iff
φm(1) ≤ 1/2).
Introduce a finite discretization V of the set D = ∆(Ω) and
consider a predictor acting in V with the following interpretation:
“φm = v ” means that the anticipated probability that Xm = ω (or
Xω

m = 1) is vω.
Definition:
φ is ε-calibrated if, for any v ∈ V :

lim
n→+∞

1
n
‖

∑
{m≤n,φm=v}

(Xm − v)‖ ≤ ε
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If the proportion of stages where v is predicted does not vanish,
the average value of Xm on these dates is close to v .

Let Bv
n be the set of stages before n where v is announced, let

Nv
n be its cardinal and X n(v) the empirical average of Xm on

these stages.
Then the condition writes:

lim
n→+∞

Nv
n

n
‖X n(v)− v‖ ≤ ε, ∀v ∈ V .
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From internal consistency to calibrating

Foster and Vohra (1997)
Consider the online process where the choice set of the
forecaster is V and the outcome given v and Xm is:

Uv
m = ‖Xm − v‖2

(where we use the L2 norm).
Given an internal consistent procedure φ one obtains (the
outcome is here a loss)

1
n

∑
m∈Bv

n

(Uv
m − Uw

m ) ≤ o(n), ∀w ∈ V ,
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This is:

1
n

∑
m∈Bv

n

(‖Xm − v‖2 − ‖Xm − w‖2) ≤ o(n), ∀w ∈ V ,

and is equal to :

Nv
n

n
(‖X n(v)− v‖2 − ‖X n(v)− w‖2) ≤ o(n), ∀w ∈ V .

In particular by chosing a point w closest to X n(v)

Nv
n

n
(‖X n(v)− v‖2) ≤ δ2 + o(n)

where δ is the L2 mesh of V , from which calibration follows.
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From calibrating to approachability

Foster and Vohra (1997)
We use calibrating to prove approachability of convex sets.

Assume that C satisfies: ∀ y ∈ Y , ∃ x ∈ X such that x A y ∈ C.

Consider a δ-grid of Y defined by {yv , v ∈ V}.
A stage is of type v if player 1 predicts yv and then plays a
mixed move xv such that xv A yv ∈ C.
By using a calibrated procedure, the average move of player 2
on the stages of type v will be δ close to yv .
By a martingale argument the average payoff will then be ε
close to xv A yv for δ small enough and n large enough.
Finally the total average payoff is a convex combination of such
amounts hence is close to C by convexity.
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Extensions

1. Conditional expectation
Regret at stage n that the player wants to control:

n∑
m=1

Uk
m − ωm, k ∈ K

where ωm = Ukm
m is the random payoff at stage m.

Let xm ∈ ∆(K ) be the strategy of the player at stage m, then

E(ωm|hm−1) = 〈Um, xm〉

so that ωm − 〈Um, xm〉 is a bounded martingale difference.
Hoeffding-Azuma’s concentration inequality for a process {Zn}
of martingale differences with |Zn| ≤ L states that:

P{|Z n| ≥ ε} ≤ 2 exp(−n ε2

2L2 )

Hence the average difference between the payoff and its
conditional expectation is controlled.
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Thus we consider quantities of the form:

n∑
m=1

Uk
m − 〈Um, xm〉, k ∈ K .

or equivalently, because of the linearity:

n∑
m=1

〈Um, x〉 − 〈Um, xm〉, x ∈ ∆(K ).

hence EC writes:
n∑

m=1

〈Um, x〉 − 〈Um, xm〉 ≤ o(n), x ∈ ∆(K )

Similarly IC becomes:

n∑
m=1

x i
m[U j

m − U i
m] ≤ o(n), ∀i , j ∈ K .
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2. Procedures in law
Assume that the actual move kn is not observed and define a
pseudo-process R̃ defined through the conditional expected
regret:

Rn = Un − ωn1, R̃n = Un − 〈Un, xn〉1

and introduce the associated strategy σ̃.
Then consistency holds both for the pseudo and the realized
processes under σ̃.
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3. Experts
External consistency can be considered as a robustness
property of σ facing a given finite family of “external” experts
using procedures φ ∈ Φ:

lim
1
n

[
n∑

m=0

〈φm − xm,Um〉] ≤ 0, ∀φ ∈ Φ.

The typical case corresponds to a constant choice : φ = k and
Φ = K .
In general “k ” will be the (random) move of expert k , that the
player follows with probability xk

m at stage m.
Uk

m is then the payoff to expert k at stage m.
Internal consistency corresponds to experts adjusting their
behavior to the one of the predictor.
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4. From external to internal consistency

Stoltz and Lugosi (2005)
Consider a family ψij , (i , j) ∈ K × K of experts and θ an
algorithm that satisfies external consistency with respect to this
family.
Define σ inductively as follows.
Given some element p ∈ ∆(K ), let p(ij) be the vector obtained
by adding pi to the j th component of p.
Let qn+1(p) be the distribution induced by θ at stage n + 1 given
the history hn and the behavior ψij(hn) = p(ij) of the experts.
Assume that the map p 7→ qn+1(p) is continuous and let pn+1
be a fixed point which defines σ(hn) = xn+1.
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The fact that σ is an incarnation of θ implies that it performs well
facing any ψij hence

[
n∑

m=0

〈ψij
m − xm,Um〉] ≤ o(n), ∀i , j

which is

[
n∑

m=0

〈p(ij)m − pm,Um〉] ≤ o(n), ∀i , j

hence

[
n∑

m=0

pi
m(U j

m − U i
m)] ≤ o(n), ∀i , j

and this is the internal consistency condition.
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Blum and Mansour (2007)
Consider K parallel algorithms {φ[k ]} having no external regret,
that generates each a (row) vector q[k ] ∈ ∆(K ) then define σ
by the invariant measure p with p = pQ. Given the outcome
U ∈ IRK , add pkU to the entry of algorithm φ[k ]. Expressing the
fact that φ[k ] satisfies no external regret gives, at stage m, for
all j ∈ K

[
n∑

m=0

pk
mU j

m − 〈q[k ]m,pk
mUm〉] ≤ o(n)

Note that
∑

k 〈q[k ]m,pk
mUm〉 =

∑
k 〈pk

mq[k ]m,Um〉 = 〈pm,Um〉,
hence by summing over k , for any function M : K 7→ K ,
corresponding to a perturbation of σ with j = M(k) the
difference between the performances of σM and σ will satisfy:

[
n∑

m=0

∑
k

pk
mUM(k)

m − 〈pm,Um〉] ≤ o(n).

This is the internal consistency for “swap experts”.
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5. Bandit framework
This is the case where given the move k and the vector U the
only information to the predictor is the realization ω = Uk (the
vector U is not announced).
Define the pseudo regret vector at each stage n by:

Ûk
n =

ωn

σk
n

1{kn=k}

and note that it is an unbiased estimator of the true regret.
To keep the outcome bounded one may have to perturb the
strategy but same asymptotic properties hold.
(Auer, Cesa-Bianchi, Freund, Shapire, 2002)

For recent advances, see Bubeck and Cesa-Bianchi (2012),
chapter 5.
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6. Imperfect monitoring
At each stage n, given a profile of moves (in, jn), a signal sn in a
finite set S with law M(in, jn) is sent to player 1 and this is his
only information.
Given y ∈ Y = ∆(J), m(y) ∈ ∆(S)I = { M(i , y), i ∈ I} is the
“flag” induced by y .

d(µ) = max
x∈∆(I)

min
y∈∆(J);m(y)=µ

G(x , y).

Note that in general best replies are not pure.
Given a n-stage play the average flag is µn, where µr = m(jr )
(hence also m(yn)) and the external regret is then

rn = d(µn)−Gn

Cesa-Bianchi, Lugosi and Stoltz (2006), Lehrer and Solan
(2007), Lugosi, Mannor and Stoltz (2008), Perchet (2009)
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The vector of internal regret is defined similarly.
Let An[`] be the set of stages before n where player 1 uses x [`]
and Nn[`] its cardinality. µn[`] resp. Gn[`], are the corresponding
average flag resp. payoff. Then:

Rn[`] = d(µn[`])−Gn[`], ` ∈ L

and define ε−internal consistency as:

lim sup
n→+∞

Nn[`]

n
(Rn[`]− ε)+ → 0, ∀` ∈ L.

The main result in this framework is the existence of ε−internal
consistent strategies, Perchet (2009)
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Approachability

Perchet V. (2011a)
Let

P(x , µ) = {G(x , y); m(y) = µ, y ∈ Y} ⊂ IRd

be the set of payoffs compatible with the strategy x ∈ X and the
flag µ.

Proposition

A closed convex set C ⊂ IRd is approachable (by player 1) if
and only if

∀µ ∈ m(Y ), ∃x ∈ X such that P(x , µ) ⊂ C.

Note that this is exactly Blackwell’s condition in the full
monitoring case.
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Topics on strategic learning II:

Global procedures
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Application to games

Let G be a finite game in strategic form.
Finitely many players i ∈ I.
Si : finite moves set of player i , S =

∏
i Si ,

Z = ∆(S) set of probabilities on S (correlated moves).
Repeated interaction in discrete time
At each stage the players observe the actions of their
opponents.
We want evaluate the joint impact on the play of the prescribed
behavior of the players.
Study the procedure from the view point of player 1
S1 = K ,X = ∆(K ) (mixed moves of player 1),
L =

∏
i 6=1 Si , and Y = ∆(L) (correlated moves of player 1’s

opponents) hence Z = ∆(K × L).
F : S → IR denotes the payoff function of player 1
and its linear extension to Z .
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External consistency and Hannan’s set

H1 (for Hannan’s set) is the set of correlated moves in z ∈ Z
satisfying:

F (k , z−1) ≤ F (z),∀k ∈ K

where z−1 stands for the marginal of z on L.
(Player 1 compares his payoff using a given move k to his
actual payoff at z, assuming the other players’ behavior, z−1,
given.)

Linearity (and stationarity) allow to deduce from property on the
payoffs, property on the moves.
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Consider the on line problem corresponding to the repeated
game with outcome vector at stage m given by {F (k , `m}k∈K},
where `m is the profile of moves of his opponents, and define
the empirical average distribution of moves

zn =
1
n

n∑
m=1

(km, `m) ∈ Z

Proposition

If Player 1 follows some external consistent procedure, zn
converges a.s. to the Hannan set H1.
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Proof
The proof is straightforward due to the linearity of the payoff.
The external consistency property is

1
n

n∑
m=1

F (k , `m)− 1
n

n∑
m=1

F (km, `m) ≤ o(n) ∀k ∈ K

which gives:

F (k ,
1
n

n∑
m=1

`m))− F (
1
n

n∑
m=1

(km, `m)) ≤ o(n) ∀k ∈ K

and this expression is:

F (k , z−1
n )− F (zn) ≤ o(n) ∀k ∈ K .
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One defines similarly H i for each player and H = ∩iH i which is
the global Hannan’s set.

Proposition
If all players follow some external consistent procedure, the
empirical distribution of moves converges a.s. to the Hannan
set H.

Note that no coordination is required.

In the case of a zero-sum game one has, for z ∈ H with
marginals z1, z2:

f (z) ≥ f (s1, z2), ∀s1 ∈ S1

and the opposite inequality for the other player hence the
marginals z1, z2 are optimal strategies and f (z) is equal to the
value.
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Example: for the zero-sum game

0 1 −1
−1 0 1
1 −1 0

the distribution
1/3 0 0
0 1/3 0
0 0 1/3

is in the Hannan set.
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Internal consistency and correlated equilibria

A correlated equilibrium of G is a Nash equilibrium of the game
extended by an information structure I given by:
- a probability space (Ω,A,P)
- a family of measurable maps θi from (Ω,A) to Ai (set of
signals for player i).
A profile σ of strategies in [G, I] maps the initial probability P on
Ω to a probability Q(σ) on S.
CED(G) is the set of equilibrium correlated distributions in G
= {Q(σ), σ equilibrium in [G, I]} .
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Theorem (Aumann, 1974)

Q ∈ CED(G) iff∑
s−i∈S−i

[Gi(si , s−i)−Gi(t i , s−i)]Q(si , s−i) ≥ 0,∀si , t i ∈ Si ,∀i ∈ I
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Back to the repeated game framework we still consider only
player 1 and denote by F his payoff.
Given z = (zs)s∈S ∈ Z , introduce the family of comparison
payoffs, testing k against j defined by:

C(j , k)(z) =
∑
`∈L

[F (k , `)− F (j , `)]z(j,`) j , k ∈ K .

Define :

C1 = {z ∈ Z ; C(j , k)(z) ≤ 0, ∀j , k ∈ K}.

Proposition

If Player 1 follows some internal consistency procedure, the
empirical distribution of moves converges a.s. to the set C1.
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Proof
The internal consistency property is

1
n

∑
1≤m≤n,km=k

[F (j , `m)− F (km, `m)] ≤ o(n) ∀k , j ∈ K

which gives:∑
`∈L

[F (j , `)− F (k , `)]zn(k , `) ≤ o(n) ∀k , j ∈ K
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Recall that the set of correlated equilibrium distribution of the
game {G} is defined by

C = {z ∈ Z ;
∑
`∈S−i

[F i(k , `)−F i(j , `)]z(j,`) ≤ 0, ∀j , k ∈ Si ,∀i ∈ I}.

so that
C = ∩i∈ICi

Thus we obtain:

Proposition
If each player follows some internal consistency procedure, the
empirical distribution of moves converges a.s. to the set of
correlated equilibria.

Note that this provides a proof of existence of correlated
equilibrium through the existence of internally consistent
procedures.
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From calibrating to correlated equilibrium

Foster and Vohra (1997)
Consider the case where Player 1 is forecasting the behavior of
his opponents (a profile in L).
Given a precision level δ, Player 1 predicts points in a δ-grid V
of ∆(L) and plays a pure best reply k to his forecast.
If the forecast is calibrated the empirical distribution of the
moves of the opponents will be close to v , on each set of stages
of the form {m; vm = v ∈ ∆(L)}, hence the action chosen by
Player 1, k , will be almost a best reply to the frequency near v .
If z is the average empirical distribution, the conditional
distribution z|k on L will correspond to a convex combination of
distributions v to which k is best reply, hence k will still be
(approximate ) best reply to z|k : hence z is (approximately) in
C1.
If all players use calibrated strategies the empirical average
frequency converges to C.
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No convergence to Nash

There is no uncoupled deterministic smooth dynamic that
converges to Nash equilibrium in all finite 2-person games:
Hart and Mas-Colell (2003).
Similarly there are no learning process with finite memory such
that the stage behavior will converge to Nash equilibrium: Hart
and Mas-Colell (2005).
Similar results were obtained for MAD dynamics, Hofbauer and
Swinkels (1995).
See also Foster and Young (2001) On the impossibility of
predicting.
Young (2002) On the limits to rational learning .
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Topics on strategic learning III:

Alternative approaches
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Hypothesis testing

Procedures that corresponds to a random search of an
equilibrium profile.

First approach: prediction of the behavior of the opponents and
hypothesis testing, Foster and Young (2003).
Each player state variable has 3 components:
- the empirical frequency of the moves of the opponent during
the last s periods
- an hypothesis on this variable
- a counting variable relevant to the mode of the player.
If the hypothesis is rejected, the player chooses a new one at
random. Then for specific choices of the parameters
convergence in probability to Nash equilibria will occur.
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A more direct process can be described as follows:
Consider a δ-discretization of the set of mixed strategies
X =

∏
i X i =

∏
i ∆(Si) denoted by {xv ; v ∈ V}.

Given the payoff function G and ε > 0 at least one of the xv is
for δ small enough an ε-equilibrium of G.
Each player i plays by large blocks L an i.i.d. strategy x i

v while
occasionally testing all his moves in Si . Given a tolerance
bound η > 0, if one move si gives more than the average payoff
the block + η, he chooses at random a new point in the grid.
Otherwise he keeps playing x i

v for another block.
Conditions such that the proportion of blocks played with
{v ∈ V ∗; xv ε-equilibrium of G} approaches 1.
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This model has been proposed by Foster and Young (2006)
and improved by Germano and Lugosi (2007).
Note that this strategy is radically uncoupled, in the sense that
not only it does not depend on the payoff function of the
opponents but it does not depend on the knowledge of their
moves. It is simply a function of the realized payoffs of the
player.
Characteristics of this procedure are:
inertia (keep playing if there are small variations)
search (with positive probability experiment)

Coordination is in the choice of the parameters

Pradelski and Young (2012)
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Fictitious play

Discrete time fictitious play

Consider a finite game with I players having pure strategy sets
Si and mixed strategy sets X i = ∆(Si). The payoff fonction is F
from S =

∏
i Si to IRI .

The game is played repeatedly in discrete time and the moves
are announced.
Given an n-stage history hn = (x1 = {x i

1}i∈I , x2, ..., xn) ∈ Sn, the
move x i

n+1 of player i at stage n + 1 is a best reply to the “time
average moves” of her opponents.

x i
n+1 ∈ BR i(x−i

n ) (4)

where BR i is the best reply correspondence of player i , from
∆(S−i) to X i , with S−i =

∏
j 6=i Si .
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The stage difference is expressed as

x i
n+1 − x i

n =
x i

n+1 − x i
n

n + 1

so that (4) can also be written as :

x i
n+1 − x i

n ∈
1

(n + 1)
[BR i(x−i

n )− x i
n]. (5)

Definition
Brown (1949, 1951)
A sequence {xn} of moves in S satisfies discrete fictitious play
(DFP) if (5) holds.

Remark. x i
n does not appear explicitely any more in (5): the

natural state variable of the process is the empirical average
x i

n ∈ X i .
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Continuous fictitious play and best reply dynamics

The continuous (formal) counterpart of the above difference
inclusion is the differential inclusion:

Ẋ i
t ∈

1
t

[BR i(X−i
t )− X i

t ]. (6)

The change of time Zs = Xes leads to

Ż i
s ∈ [BR i(Z−i

s )− Z i
s] (7)

called continuous best reply (CBR) and studied by Gilboa and
Matsui (1991).
One can deduce properties of the initial discrete time process
from the analysis of the continuous time counterpart, Harris
(1998), Hofbauer and Sorin (2006), Benaim, Hofbauer and
Sorin (2005)

Sylvain Sorin



Main results

Convergence of xn to the set of Nash equilibria:
- zero-sum games, Robinson (1951) (and convergence of the
average realized payoff to the value)
- potential games, Monderer and Shapley (1996)
There exists G such that ∀si , t i , s−i ∈ Si 2 × S−i , ∀i ∈ I :

F i(si , s−i)− F i(t i , s−i) = G(si , s−i)−G(t i , s−i).

- no unilateral good properties (but smooth FP does,
Fudenberg and Levine (1995))
- no convergence in general: Shapley triangle (1964)
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Bayesian approaches

Rational behavior with uncertainty

Merging
Blackwell and Dubins (1962)
{Xn},n ∈ IN , random process with values in a finite set Ω
P true distribution, Q belief distribution
Assume P absolutely continuous wtrt Q
Then Q merges to P:

sup
A∈F∞

|P(A|Fn)−Q(A|Fn)| → 0
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Kalai and Lehrer (1993)
Repeated game
Each player i has a belief on the behavior of the opponents and
plays a best reply. This induces a probability Qi on plays.
If the true probability on plays P is absolutely continuous wrt
each Qi , the players will eventually play like an approximate
equilibria.

Application:
games with incomplete information
reputation effects

Related topics:
weak merging
grain of truth
speed of cv
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Revision of beliefs and consensus
Aumann (1976) Agreing to disagree
Consider a random parameter and n players with private
information:
if the beliefs are common knowledge they must be the same.
Geanakoplos and Polemarchakis (1982)
Explicit process of beliefs revision.

Random parameter ω ∈ Ω each player receives a private signal
correlated to ω and plays as a function of her information.
repeated play, observation of the other players moves and
revision of the beliefs
Main questions :
convergence of the beliefs: consensus
exhaustivity of the information
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Example:
a) line network
2 neighbors with the same signal will not change
b) royal family
false belief will invade

Rosenberg, Solan and Vieille (2009)
Properties of social network
Mossel, Sly and Tamuz (2015)
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Informational casacade
Social learning and herd behavior
Random parameter ω ∈ Ω each player receives a private signal
correlated to ω and plays once in turn as a function of his
information: behavior of the predecessors and private signal

Example

perturbation : with probability pn player n has no access to the
previous performances
evaluation: probability rn of good prediction at stage n
Peres, Racz, Sly and Stuhl (2018)

Questions:
accuracy of the beliefs
speed of convergence
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Learning in extensive games

Fudenberg and Levine and alii

Rationality and equilibrium
evolution of non equilibrium behavior
from passive to active learning
Conjectural equilibrium
Self confirming equilibrium
Selten’s horse
experimentation to obtain information on the strategy used by
the other players
or to have an impact on their behavior via cascade
knowledge of the game structure
rationality hypotheses
selection of equilibria
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Topics on strategic learning IV

Link with dynamical systems
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Continuous time dynamics

Hofbauer and Sigmund (1998) Evolutionary Games and
Population Dynamics, Cambridge U.P.
Sandholm (2010) Population Games and Evolutionary
Dynamics, M.I.T Press.
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Consider games where equilibria x ∈ X are characterized via
variational inequalities (Sorin and Wang, 2016)

〈Φ(x), x − y〉 =
∑
i∈I

〈Φi(x), x i − y i〉 ≥ 0, ∀y ∈ X . (8)

where X i ⊂ IRn, compact, convex is the strategy set of player i ,
X =

∏
i X i .

Φi is a map from X to X i .
Examples are:
- finite games
- C1 concave games
- population games

Potential games are such that there exist P from X to IR with:

〈Φi(x)−∇iP(x), x − y〉 = 0, y ∈ X

Dissipative games satisfy:

〈Φ(x)− Φ(y), x − y〉 ≤ 0
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i∈I

〈Φi(x), x i − y i〉 ≥ 0, ∀y ∈ X . (8)

where X i ⊂ IRn, compact, convex is the strategy set of player i ,
X =

∏
i X i .

Φi is a map from X to X i .
Examples are:
- finite games
- C1 concave games
- population games

Potential games are such that there exist P from X to IR with:

〈Φi(x)−∇iP(x), x − y〉 = 0, y ∈ X

Dissipative games satisfy:

〈Φ(x)− Φ(y), x − y〉 ≤ 0
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Examples of dynamics expressed in terms of Φ. For the first
three Si is finite and X i = ∆(Si).
(1) Replicator dynamics (RD) (Taylor and Jonker [53])

ẋ i
p = x i

p[Φi
p(x)− Φ

i
(x)], p ∈ Si , i ∈ I,

where
Φ

i
(x) = 〈x i ,Φi(x)〉 =

∑
p∈Si

x i
pΦi

p(x)

is the average evaluation for participant i .
(2) Brown-von-Neumann-Nash dynamics (BNN) (Brown and
von Neumann [36], Smith [51], Hofbauer [43])

ẋ i
p = Φ̂i

p(x)− x i
p

∑
q∈Si

Φ̂i
q(x), p ∈ Si , i ∈ I,

where Φ̂i
q(x) = [Φi

q(x)− Φ
i
(x)]+ is called the “excess

evaluation” of q.
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(3) Smith dynamics (Smith) (Smith [50])

ẋ i
p =

∑
q∈Si

x i
q[Φi

p(x)−Φi
q(x)]+−x i

p

∑
q∈Si

[Φi
q(x)−Φi

p(x)]+,p ∈ Si , i ∈ I,

where [Φi
p(x)− Φi

q(x)]+ corresponds to pairwise comparison
[48].
(4) Local/direct projection dynamics (LP) (Dupuis and
Nagurney [38], Lahkar and Sandholm [45])

ẋ i = ΠTXi (x i )[Φi(x)], i ∈ I,

where TX i (x i) denotes the tangent cône to X i at x i .
(5) Global/target projection dynamics (GP) (Friesz et al. [39],
Tsakas and Voorneveld [54])

ẋ i = ΠX i [x i + Φi(x)]− x i , i ∈ I.
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(6) Best reply dynamics (BR) (Gilboa and Matsui [40])

ẋ i ∈ BR i(x)− x i , i ∈ I,

where

BR i(x) = {y i ∈ X i , 〈y i − z i ,Φi(x)〉 ≥ 0,∀z i ∈ X i}.
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Properties

Properties expressed in terms of Φ.
Definition
Dynamics BΦ satisfies:
i) positive correlation (PC) (Sandholm [47]) if:

〈Bi
Φ(x),Φi(x)〉 > 0, ∀i ∈ I, ∀ x ∈ X s.t. Bi

Φ(x) 6= 0.

(This corresponds to MAD (myopic adjustment dynamics)
(Swinkels [52]): given a configuration, any unilateral change
should increase the evaluation);
ii) Nash stationarity if: for x ∈ X , BΦ(x) = 0 if and only if x is an
equilibrium of Γ(Φ).

Proposition

(RD), (BNN), (Smith), (LP), (GP) and (BR) satisfy (PC).
all except (RD) satisfy (NS).
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Lyapounov functions
Consider a potential game and a dynamic satisfying (PC).
Then P is a Lyapounov function

Similar properties for dissipative games with ad hoc Lyapounov
functions.

Further results:
elimination of dominated strategies
stability of pure strict equilibria
convergence to a profile from inside implies Nash
Lyapounov implies Nash

Hofbauer, Sandholm, Panayotis, Coucheney, Gaujal, Leslie,
Laraki, Staugigl, Viossat, ...

Sylvain Sorin



0-sum games
Population games
Congestion games
Extension to composite games

Sylvain Sorin



Concluding comments

- connection : discrete/ continuous time
Stochastic approximation
- new concepts= attractors, ICT
pertubation of games and components of equilibra
- links
FP in terms of strategies or in term of payoffs (different
interpretation)
perturbed best-reply / smooth FP
connection with no-regret procedures
RD and external consistency
Time average RD and Best reply dynamics
- no regret in learning, games and convex optimization
references on line learning/convex analysis
Bubeck
Hazan
Shalev Schwartz
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