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Introduction

You are planning your commute route for tomorrow.

Not sure about your departure time, nor who might be on the road.

A game with a random set of players !
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Introduction

Outline – Convergence
Congestion games model strategic situations that feature crowding externalities,
where costs are monotone in the number of players.

Games involving “many small players” are
conveniently modeled as nonatomic games
with a continuum of players.

Can we precise in which sense the discrete
and continuous models are close ?

This depends on what we mean by “small”... For instance:
Player i has a small load wi ∼ 0 to be transported with certainty,
Player i has a unit load but is present with small probability pi ∼ 0.

Depending on which limit we consider, we get different nonatomic models.
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Introduction

Outline – Price of Anarchy
Focusing on atomic congestion games with affine costs and stochastic demands
where each player is present with probability p, we study how

PoA(p) = Social cost of worst equilibrium
Least possible social cost

as a function of p.
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Convergence of Congestion Games

1 Introduction

2 Convergence of Congestion Games
Nonatomic games and Wardrop equilibria
Weighted atomic games: convergence of Nash equilibria
Stochastic atomic games: convergence of Bayes-Nash equilibria

3 Price-of-Anarchy for Stochastic ACGs with Affine Costs
Upper bounds
Lower bounds
Price-of-Stability
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Convergence of Congestion Games

Congestion Games
A congestion game is described by

a set of resources e ∈ E with continuous monotone costs ce : R → R+

a set of types t ∈ T with corresponding strategy sets St ⊆ 2E

a (continuous or discrete) demand dt ≥ 0 for each type t ∈ T

Example: In routing games the resources are the edges of a network G = (V,E),
T is the set of OD pairs, and St the paths connecting (ot, dt).

o1

o2

d

x

x

1 1

Non-atomic: continuous, fine grained, many players → urban traffic
Atomic splittable: continuous, few players → fluids, sand, telecom
Atomic unsplittable: discrete, few players → vessels, airplanes
Stochastic: unpredictable → packets or vehicles over a network
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Convergence of Congestion Games Nonatomic games and Wardrop equilibria

Non-Atomic Congestion Games

A non-atomic congestion game is characterized by continuous and perfectly
divisible aggregate demands dt ≥ 0 for each type t ∈ T.

A Wardrop equilibrium is a decomposition of the demands dt =
∑

s∈St
ys into

strategy flows ys ≥ 0 such that only minimum cost strategies are used, i.e.

(∀t ∈ T)(∀s, s′ ∈ St) ys > 0 ⇒
∑
e∈s

ce(xe) ≤
∑
e∈s′

ce(xe)

where xe =
∑

s∋e ys are the induced resource-loads.
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Convergence of Congestion Games Nonatomic games and Wardrop equilibria

Atomic Splittable Congestion Games

Atomic splittable congestion games are similar to non-atomic models in that
demands are continuous and can be split arbitrarily over different strategies.

The fundamental differences are:
1 There are finitely many players, each one controls a fraction of the demand.
2 Each player has a non-negligible effect on congestion and exploits her market

power by strategically splitting the demand over the available strategies.

Theorem (Haurie & Marcotte, 1985)
When the number of players increases and the demand controlled by each of them
tends to 0, the splittable equilibria converge to a Wardrop equilibrium.

For the precise statement and subsequent generalizations, see Jacquot & Wang
(2018) and references therein.

Here we address the discrete cases: unsplittable and stochastic demands.

(Institut Henri Poincaré) Stochastic Atomic Congestion Games 8 / 33
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Convergence of Congestion Games Weighted atomic games: convergence of Nash equilibria

Weighted Atomic Congestion Games

Weighted atomic congestion games feature a finite set of players i ∈ N each one
with a type ti ∈ T and an (unsplittable) weight wi > 0.

The total demand for type t ∈ T is dt =
∑

i:ti=t wi.
For a strategy profile s = (si)i∈N with si ∈ Sti we denote Xi,e = 1{e∈si}.
The corresponding resource-loads are We =

∑
i∈N wi Xi,e.

Given mixed strategies πi ∈ ∆(Sti), the Bernoulli random variables Xi,e are
independent across players with P(Xi,e = 1) =

∑
si∋e πi(si).

A mixed strategy profile π = (πi)i∈N is a Nash equilibrium iff for each player i and
strategies s, s′ ∈ Sti with πi(s) > 0 we have∑

e∈s
E[ce(We)|Xi,e = 1] ≤

∑
e∈s′

E[ce(We)|Xi,e = 1]

(Institut Henri Poincaré) Stochastic Atomic Congestion Games 9 / 33
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Convergence of Congestion Games Weighted atomic games: convergence of Nash equilibria

ACGs with identical weights wi ≡ w̄ are potential games and admit pure
equilibria (Rosenthal’73).
For heterogeneous weights we only have the existence of mixed equilibria.

Example. A 2-player routing game with equal weights wi = 1
o1

o2

d

x

x

1 1

R U
R (1, 1) (2, 3)
D (3, 2) (2, 2)

Example: Routing 10 players over 2 identical parallel links.

o d

x

x
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Convergence of Congestion Games Weighted atomic games: convergence of Nash equilibria

Wardrop Convergence for Vanishing Weights

Theorem

Consider an arbitrary sequence πn of mixed equilibria for a sequence of weighted
ACGs with player sets N = {1, . . . , n} and weights wn

i such that{
a) maxi∈N wn

i → 0
b) (∀t ∈ T) dn

t ≜
∑

i:tn
i =t wn

i → dt

Then

1 The sequence yn of expected strategy loads yn
s =

∑
i wn

i π
n
i (s) is bounded and

each accumulation point ȳ is a Wardrop equilibrium for the nonatomic game
with demands dt and costs ce(·).

2 Along any convergent subsequence, the random resource-loads Wn
e converge

in distribution to the constant resource-loads x̄e in the Wardrop equilibrium ȳ.

Remark: If the ce(·)’s are strictly monotone, then x̄ is unique and Wn
e

D→ x̄e.
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each accumulation point ȳ is a Wardrop equilibrium for the nonatomic game
with demands dt and costs ce(·).

2 Along any convergent subsequence, the random resource-loads Wn
e converge

in distribution to the constant resource-loads x̄e in the Wardrop equilibrium ȳ.
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Convergence of Congestion Games Stochastic atomic games: convergence of Bayes-Nash equilibria

Stochastic Atomic Congestion Games

A stochastic atomic congestion game features finitely many players i ∈ N with
types ti ∈ T, unit weights wi = 1, and a probability of being active

pi = P(Yi = 1).

As before Xi,e = 1{e∈si} indicates whether player i uses resource e, so that
denoting Yi,e = Yi Xi,e, the total resource-loads are

Ne =
∑

i∈N Yi,e.

A strategy profile π = (πi)i∈N is a Bayes-Nash equilibrium if for each player i and
strategies s, s′ ∈ Sti with πi(s) > 0 we have∑

e∈s
E[ce(Ne)|Yi,e = 1] ≤

∑
e∈s′

E[ce(Ne)|Yi,e = 1].

Remark. The costs ce(·) need only be defined over the integers ce : N → R+,
and the continuity assumption becomes irrelevant.

(Institut Henri Poincaré) Stochastic Atomic Congestion Games 12 / 33
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Convergence of Congestion Games Stochastic atomic games: convergence of Bayes-Nash equilibria

Stochastic ACGs are Potential Games

Theorem
Every stochastic ACG is a potential game, hence it has pure Nash equilibria, with
potential given by

Φ(s) ≜ E

∑
e∈E

Ne(s)∑
k=1

ce(k)


where Ne(s) =

∑
i∈N Yi1{e∈si}.
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Convergence of Congestion Games Stochastic atomic games: convergence of Bayes-Nash equilibria

Poisson Convergence for Vanishing Probabilities

Theorem
Let πn be an arbitrary sequence of Bayes-Nash equilibria for a sequence of
stochastic ACGs with unit weights wi = 1 and probabilities pn

i such that{
a) maxi∈N pn

i → 0
b) (∀t ∈ T) dn

t ≜
∑

i:tn
i =t pn

i → dt

Suppose further that E[X 2ce(1+X)] < ∞ for every X ∼ Poisson(x), and set

c̃e(x) ≜ E[ce(1+X)] =
∑∞

k=0 ce(1+k)e−x xk

k! .

Then
1 The sequence yn of expected strategy loads yn

s =
∑

i pn
i π

n
i (s) is bounded and

each accumulation point ỹ is a Wardrop equilibrium for the non-atomic
congestion game with demands dt and costs c̃e(·).

2 Along any convergent subsequence, the random resource-loads Nn
e converge

in distribution to a Poisson random variable Ne ∼ Poisson(x̃e), with x̃e the
resource-loads in the corresponding Wardrop equilibrium ỹ.
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Convergence of Congestion Games Stochastic atomic games: convergence of Bayes-Nash equilibria

Poisson convergence for vanishing probabilities

Corollary
If the costs ce : N → R+ are monotone and non-constant, then c̃e(·) are strictly
monotone. Hence, the resource-loads x̃e are the same in any Wardrop equilibrium,
and for every sequence πn of Bayes-Nash equilibria we have

Nn
e

D→ Ne ∼ Poisson(x̃e).
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Convergence of Congestion Games Stochastic atomic games: convergence of Bayes-Nash equilibria

Summary and Comments

1 Both wn
i → 0 and pn

i → 0 lead to different non-atomic games in the limit.
For vanishing weights, the random resource-loads Wn

e converge in distribution
to the constants resource-loads x̄e.
For vanishing probabities, Nn

e remain random in the limit and converge in
distribution to some Ne ∼ Poisson(x̃e).

2 The latter seems more appropriate to capture the randomness observed in
real networks. Also pn

i → 0 is quite natural... congestion depends on players
that are present on a small window around your departure time.

3 The Poisson limit can be shown to be a special case of Myerson’s Poisson
games (Int J Game Theory 1998): the normalized limit flows σ(s|t) = ỹs/dt
for s ∈ St are in fact an equilibrium in the Poisson game.

4 However, Poisson games were defined without reference to a limit process,
so the convergence result seems new. Also the connection between Poisson
games and nonatomic games seems to be novel.

(Institut Henri Poincaré) Stochastic Atomic Congestion Games 16 / 33
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Price-of-Anarchy for Stochastic ACGs with Affine Costs

1 Introduction

2 Convergence of Congestion Games
Nonatomic games and Wardrop equilibria
Weighted atomic games: convergence of Nash equilibria
Stochastic atomic games: convergence of Bayes-Nash equilibria

3 Price-of-Anarchy for Stochastic ACGs with Affine Costs
Upper bounds
Lower bounds
Price-of-Stability
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Price-of-Anarchy for Stochastic ACGs with Affine Costs

Stochastic ACGs with Homogeneous Players

From now on we consider Stochastic ACGs with homogeneous players with unit
weights wi ≡ 1 and the same probabilities of being active P(Yi = 1) ≡ p.

Proposition
A Stochastic ACG with homogeneous players is equivalent to a deterministic
unweighted ACG for the auxiliary costs

cp
e(k) = E[ce(1 + B)] with B ∼ Binomial(k−1, p)

We are interested in how the Price-of-Anarchy varies as a function of p when we
move from the deterministic case p = 1 to the limit when p ↓ 0.

(Institut Henri Poincaré) Stochastic Atomic Congestion Games 18 / 33
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Price-of-Anarchy for Stochastic ACGs with Affine Costs

PoA for Bayes-Nash Equilibria

The expected cost for player i is

Cp
i (π) = p E

[∑
e∈E Xi,ecp

e(Ne)
]

and the total social cost is

Cp(π) =
∑

i∈N Cp
i (π) = p E

[∑
e∈E Ne cp

e(Ne)
]
.

A strategy profile π∗ minimizing Cp(·) is called a social optimum.

PoA(p) = sup
G p

max
π∈E (G p)

Cp(π)
Cp(π∗) (Price-of-Anarchy)

PoS(p) = sup
G p

min
π∈E (G p)

Cp(π)
Cp(π∗) (Price-of-Stability)
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Price-of-Anarchy for Stochastic ACGs with Affine Costs

Equivalent Deterministic Game for Affine Costs

From now on we restrict to affine costs ce(x) = ae + be x with ae, be ≥ 0. Hence

cp
e(k) = E[ce(1 + B(k−1, p))]

= ae + be(1 + (k−1)p)
= ap

e + bp
e k

Example. Stochastic routing game with 2 homogeneous players

o1

o2

d

x

x

1 1

R U
R (1, 1) (1+p, 2+p)
D (2+p, 1+p) (2, 2)
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Price-of-Anarchy for Stochastic ACGs with Affine Costs

Related Literature

Related models
- Non-atomic with stochastic demand

(Wang, Doan and Chen, 2014; Correa, Hoeksma and Schröder, 2019)
- Smoothness with incomplete information (Roughgarden, 2015)
- Perception based (Kleer and Schäfer, 2018)

PoA for congestion games with affine costs
- PoA(G ) ≤ 4

3 for non-atomic (Roughgarden and Tardos, 2002)
- PoA(G ) ≤ 5

2 for atomic deterministic (Christodoulou and Koutsoupias, 2005;
Awerbuch, Azar and Epstein, 2005)

As a consequence of the latter we get PoA(p) ≤ 5
2 .

But we can find sharper bounds... and we expect PoA(p) ∼ 4
3 for small p.
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Price-of-Anarchy for Stochastic ACGs with Affine Costs Upper bounds

Smoothness Framework

Lemma (Roughgarden, 2015)
Let G be an unweighted atomic congestion game which is (λ, µ)-smooth with
λ > 0 and µ ∈ (0, 1), that is to say

(∀s, s′ ∈ S)
∑

i∈N Ci(s′i , s−i) ≤ λC(s′) + µC(s).

Then we have PoA(G ) ≤ λ
1−µ .
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Price-of-Anarchy for Stochastic ACGs with Affine Costs Upper bounds

Smoothness Framework

Lemma

Let P = {(k,m) ∈ N2 : k ≥ 1} and suppose that λ > 0 and µ ∈ (0, 1) satisfy

k (1+pm) ≤ λ k (1−p+pk) + µm (1−p+pm) ∀(k,m) ∈ P. (1)

Then every stochastic ACG G p with homogeneous players and affine costs is
(λ, µ)-smooth, and therefore PoA(p) ≤ λ

1−µ .

The best combination of λ and µ for fixed p requires to solve

B(p) ≜ min
λ>0,µ∈(0,1)

{
λ

1−µ : subject to (1)
}

which reduces to a 1D problem noting that the smallest λ compatible with (1) is

λ = sup
(k,m)∈P

k(1+pm)−µ m(1−p+pm)
k(1−p+pk)

(Institut Henri Poincaré) Stochastic Atomic Congestion Games 23 / 33
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Price-of-Anarchy for Stochastic ACGs with Affine Costs Upper bounds

Smoothness Framework

The previous reduction leads to the equivalent minimization problem

B(p) = inf
µ∈(0,1)

φp(
µ

1−µ ) = inf
y>0

φp(y)

where φp(·) is the convex envelop function

φp(y) = sup
(k,m)∈P

1+pm
1−p+pk + k(1+pm)−m(1−p+pm)

k(1−p+pk) y.

For each p the unique optimum y can be found explicitly, and then we recover the
optimal combination (λ, µ).

(Institut Henri Poincaré) Stochastic Atomic Congestion Games 24 / 33
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Price-of-Anarchy for Stochastic ACGs with Affine Costs Upper bounds

Upper Bounds for the Price-of-Anarchy

Set p̄0 = 1
4 and let p̄1 ∼ 0.3774 be the unique real root of 8p3 + 4p2 = 1.

Theorem

The optimal solution for B(p) is

(λ, µ) =



(
1, 1

4
)

if 0 < p ≤ p̄0,(
1+p+

√
p(2+p)

2 ,
1+p−

√
p(2+p)

2

)
if p̄0 ≤ p ≤ p̄1,(

1+2p+2p2

1+2p , p
1+2p

)
if p̄1 ≤ p ≤ 1,
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Price-of-Anarchy for Stochastic ACGs with Affine Costs Upper bounds

Upper Bounds for the Price-of-Anarchy

PoA(p) ≤ B(p) =


4
3 if 0 < p ≤ p̄0,

1+p+
√

p(2+p)
1−p+

√
p(2+p)

if p̄0 ≤ p ≤ p̄1,

1 + p + p2

1+p if p̄1 ≤ p ≤ 1,

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

p

PoA(p)

p0

p1
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Price-of-Anarchy for Stochastic ACGs with Affine Costs Lower bounds

Lower Bounds for Large p

d1

d2 d3 ce(x) =


x if e = hi

p x if e = gi

0 if dashed

g1g2

g3

h1h2

h3

o1

o2

o3

⇒ PoA(G p) = 1 + p +
p2

1 + p .
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Price-of-Anarchy for Stochastic ACGs with Affine Costs Lower bounds

Lower Bounds for Small p

ō d̄

ē

o1 d1e1

o2 d2e2

o3 d3e3

ok dkek

...

2k players
ce(x) =


1

1+2kp x if e = ē
x if e = ei

0 if dashed

k

⇒ PoA(G p) = PoS(G p) ≥ 4kp+2−2p
3kp+2−p → 4

3 as k → ∞
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Price-of-Anarchy for Stochastic ACGs with Affine Costs Lower bounds

Lower Bounds for Intermediate p

a1

b1

c1

h1
g1

a2

b2
c2

h2

g2

a3

b3

c3

h3

g3

a4

b4

c4

h4g4

a5

b5

c5

h5

g5

a6

b6

c6

h6

g6

o1

d1

ce(x) =


α x if e = hi

x if e = gi

0 if dashed
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Price-of-Anarchy for Stochastic ACGs with Affine Costs

Bounds on the Price-of-Anarchy are Tight

PoA(p) = B(p) =


4
3 if 0 < p ≤ p̄0

1+p+
√

p(2+p)
1−p+

√
p(2+p)

if p̄0 ≤ p ≤ p̄1

1 + p + p2

1+p if p̄1 ≤ p ≤ 1

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

p

PoA(p)

p0

p1
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Price-of-Anarchy for Stochastic ACGs with Affine Costs Price-of-Stability

Price-of-Anarchy vs Price-of-Stability
Combining with Kleer and Schäfer (2018), we also get tight bounds for PoS

PoS(p) =
{

4/3 if 0 < p ≤ p̄0
1 +

√
p/(2 + p) if p ≥ p̄0

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

p

p0

p1

PoA(p)

PoS(p)
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Price-of-Anarchy for Stochastic ACGs with Affine Costs Price-of-Stability

Conclusion

1 Convergence towards non-atomic games:
vanishing weights −→ Wardrop
vanishing probabilities −→ Poisson

2 Tight bounds on PoA/PoS for affine costs

3 Some open questions
- Mixed limits: weights & probabilities
- Bounds on PoA for heterogeneous pi’s
- Tight bounds for general costs: quadratic, polynomial,...
- Continuity of PoA/PoS:

PoA(wn)
?−→ PoA(Wardrop)

PoA(pn)
?−→ PoA(Poisson)

- Stronger notion of optimal: prophet vs non-prophet
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Price-of-Anarchy for Stochastic ACGs with Affine Costs Price-of-Stability

Questions ?
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