# Atomic Congestion Games with Stochastic Demand Convergence and Price-of-Anarchy

R. Cominetti<sup>1</sup>, M. Scarsini<sup>2</sup>, M. Schröder<sup>3</sup>, N. Stier-Moses<sup>4</sup>

<sup>1</sup>Universidad Adolfo Ibáñez

<sup>2</sup>LUISS

<sup>3</sup>RWTH Aachen

<sup>4</sup>Facebook

#### Network, Population and Congestion Games Institut Henri Poincaré — April 16-17, 2019

You are planning your commute route for tomorrow.

Not sure about your departure time, nor who might be on the road.



#### A game with a random set of players !

#### Outline – Convergence

Congestion games model strategic situations that feature crowding externalities, where costs are monotone in the number of players.



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つくぐ

#### Outline – Convergence

Congestion games model strategic situations that feature crowding externalities, where costs are monotone in the number of players.



Games involving *"many small players"* are conveniently modeled as nonatomic games with a continuum of players.

Can we precise in which sense the discrete and continuous models are close ?

#### Outline – Convergence

Congestion games model strategic situations that feature crowding externalities, where costs are monotone in the number of players.



Games involving *"many small players"* are conveniently modeled as nonatomic games with a continuum of players.

Can we precise in which sense the discrete and continuous models are close ?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

This depends on what we mean by "small"... For instance:

- Player *i* has a small load  $w_i \sim 0$  to be transported with certainty,
- Player *i* has a unit load but is present with small probability  $p_i \sim 0$ .

Depending on which limit we consider, we get different nonatomic models.

#### Outline – Price of Anarchy

Focusing on atomic congestion games with *affine costs and stochastic demands* where each player is present with probability p, we study how

$$PoA(p) = \frac{Social cost of worst equilibrium}{Least possible social cost}$$

as a function of p.





# 2 Convergence of Congestion Games

- Nonatomic games and Wardrop equilibria
- Weighted atomic games: convergence of Nash equilibria
- Stochastic atomic games: convergence of Bayes-Nash equilibria

#### 3 Price-of-Anarchy for Stochastic ACGs with Affine Costs

- Upper bounds
- Lower bounds
- Price-of-Stability

イロト イポト イヨト イヨト

= nan

- A congestion game is described by
  - a set of *resources*  $e \in E$  with continuous monotone costs  $c_e : \mathbb{R} \to \mathbb{R}_+$
  - a set of *types*  $t \in T$  with corresponding strategy sets  $S_t \subseteq 2^E$
  - a (continuous or discrete) demand  $d_t \geq 0$  for each type  $t \in T$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ ��

A congestion game is described by

- a set of *resources*  $e \in E$  with continuous monotone costs  $c_e : \mathbb{R} \to \mathbb{R}_+$
- a set of *types*  $t \in T$  with corresponding strategy sets  $S_t \subseteq 2^E$
- a (continuous or discrete) demand  $d_t \ge 0$  for each type  $t \in T$

Example: In routing games the resources are the edges of a network G = (V, E), T is the set of OD pairs, and  $S_t$  the paths connecting  $(o_t, d_t)$ .



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ♥

A congestion game is described by

- a set of *resources*  $e \in E$  with continuous monotone costs  $c_e : \mathbb{R} \to \mathbb{R}_+$
- a set of *types*  $t \in T$  with corresponding strategy sets  $S_t \subseteq 2^E$
- a (continuous or discrete) demand  $d_t \ge 0$  for each type  $t \in T$

Example: In routing games the resources are the edges of a network G = (V, E), T is the set of OD pairs, and  $S_t$  the paths connecting  $(o_t, d_t)$ .



NON-ATOMIC: continuous, fine grained, many players  $\rightarrow$  urban traffic Atomic splittable: continuous, few players  $\rightarrow$  fluids, sand, telecom

A congestion game is described by

- a set of *resources*  $e \in E$  with continuous monotone costs  $c_e : \mathbb{R} \to \mathbb{R}_+$
- a set of *types*  $t \in T$  with corresponding strategy sets  $S_t \subseteq 2^E$
- a (continuous or discrete) demand  $d_t \ge 0$  for each type  $t \in T$

Example: In routing games the resources are the edges of a network G = (V, E), T is the set of OD pairs, and  $S_t$  the paths connecting  $(o_t, d_t)$ .



NON-ATOMIC: continuous, fine grained, many players  $\rightarrow$  urban traffic Atomic splittable: continuous, few players  $\rightarrow$  fluids, sand, telecom

ATOMIC UNSPLITTABLE: discrete, few players  $\rightarrow$  vessels, airplanes STOCHASTIC: unpredictable  $\rightarrow$  packets or vehicles over a network

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

A *non-atomic congestion game* is characterized by continuous and perfectly divisible aggregate demands  $d_t \ge 0$  for each type  $t \in T$ .

A non-atomic congestion game is characterized by continuous and perfectly divisible aggregate demands  $d_t \ge 0$  for each type  $t \in T$ .

A Wardrop equilibrium is a decomposition of the demands  $d_t = \sum_{s \in S_t} y_s$  into strategy flows  $y_s \ge 0$  such that only minimum cost strategies are used, i.e.

A *non-atomic congestion game* is characterized by continuous and perfectly divisible aggregate demands  $d_t \ge 0$  for each type  $t \in T$ .

A Wardrop equilibrium is a decomposition of the demands  $d_t = \sum_{s \in S_t} y_s$  into strategy flows  $y_s \ge 0$  such that only minimum cost strategies are used, i.e.

$$(\forall t \in T)(\forall s, s' \in S_t) \quad y_s > 0 \Rightarrow \sum_{e \in s} c_e(x_e) \le \sum_{e \in s'} c_e(x_e)$$

A *non-atomic congestion game* is characterized by continuous and perfectly divisible aggregate demands  $d_t \ge 0$  for each type  $t \in T$ .

A Wardrop equilibrium is a decomposition of the demands  $d_t = \sum_{s \in S_t} y_s$  into strategy flows  $y_s \ge 0$  such that only minimum cost strategies are used, i.e.

$$(\forall t \in T)(\forall s, s' \in S_t) \quad y_s > 0 \Rightarrow \sum_{e \in s} c_e(x_e) \le \sum_{e \in s'} c_e(x_e)$$

where  $x_e = \sum_{s \ni e} y_s$  are the induced resource-loads.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Atomic Splittable Congestion Games

Atomic splittable congestion games are similar to non-atomic models in that demands are continuous and can be split arbitrarily over different strategies.

The fundamental differences are:

- There are finitely many players, each one controls a fraction of the demand.
- Each player has a non-negligible effect on congestion and exploits her *market* power by strategically splitting the demand over the available strategies.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

# Atomic Splittable Congestion Games

Atomic splittable congestion games are similar to non-atomic models in that demands are continuous and can be split arbitrarily over different strategies.

The fundamental differences are:

- There are finitely many players, each one controls a fraction of the demand.
- Each player has a non-negligible effect on congestion and exploits her *market* power by strategically splitting the demand over the available strategies.

#### Theorem (Haurie & Marcotte, 1985)

When the number of players increases and the demand controlled by each of them tends to 0, the splittable equilibria converge to a Wardrop equilibrium.

・ロト ・四ト ・ヨト

# Atomic Splittable Congestion Games

Atomic splittable congestion games are similar to non-atomic models in that demands are continuous and can be split arbitrarily over different strategies.

The fundamental differences are:

- There are finitely many players, each one controls a fraction of the demand.
- Each player has a non-negligible effect on congestion and exploits her *market* power by strategically splitting the demand over the available strategies.

#### Theorem (Haurie & Marcotte, 1985)

When the number of players increases and the demand controlled by each of them tends to 0, the splittable equilibria converge to a Wardrop equilibrium.

For the precise statement and subsequent generalizations, see Jacquot & Wang (2018) and references therein.

Here we address the discrete cases: unsplittable and stochastic demands.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## Weighted Atomic Congestion Games

Weighted atomic congestion games feature a finite set of players  $i \in N$  each one with a type  $t_i \in T$  and an (unsplittable) weight  $w_i > 0$ .

# Weighted Atomic Congestion Games

Weighted atomic congestion games feature a finite set of players  $i \in N$  each one with a type  $t_i \in T$  and an (unsplittable) weight  $w_i > 0$ .

- The total demand for type  $t \in T$  is  $d_t = \sum_{i:t_i=t} w_i$ .
- For a strategy profile  $s = (s_i)_{i \in N}$  with  $s_i \in S_{t_i}$  we denote  $X_{i,e} = \mathbb{1}_{\{e \in s_i\}}$ .
- The corresponding resource-loads are  $W_e = \sum_{i \in N} w_i X_{i,e}$ .

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ ��

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ ��

# Weighted Atomic Congestion Games

Weighted atomic congestion games feature a finite set of players  $i \in N$  each one with a type  $t_i \in T$  and an (unsplittable) weight  $w_i > 0$ .

- The total demand for type  $t \in T$  is  $d_t = \sum_{i:t_i=t} w_i$ .
- For a strategy profile  $s = (s_i)_{i \in N}$  with  $s_i \in S_{t_i}$  we denote  $X_{i,e} = \mathbb{1}_{\{e \in s_i\}}$ .
- The corresponding resource-loads are  $W_e = \sum_{i \in N} w_i X_{i,e}$ .

Given mixed strategies  $\pi_i \in \Delta(S_{t_i})$ , the Bernoulli random variables  $X_{i,e}$  are independent across players with  $\mathbb{P}(X_{i,e} = 1) = \sum_{s_i \ge e} \pi_i(s_i)$ .

## Weighted Atomic Congestion Games

Weighted atomic congestion games feature a finite set of players  $i \in N$  each one with a type  $t_i \in T$  and an (unsplittable) weight  $w_i > 0$ .

- The total demand for type  $t \in T$  is  $d_t = \sum_{i:t_i=t} w_i$ .
- For a strategy profile  $s = (s_i)_{i \in N}$  with  $s_i \in S_{t_i}$  we denote  $X_{i,e} = \mathbb{1}_{\{e \in s_i\}}$ .
- The corresponding resource-loads are  $W_e = \sum_{i \in N} w_i X_{i,e}$ .

Given mixed strategies  $\pi_i \in \Delta(S_{t_i})$ , the Bernoulli random variables  $X_{i,e}$  are independent across players with  $\mathbb{P}(X_{i,e} = 1) = \sum_{s_i \ge e} \pi_i(s_i)$ .

A mixed strategy profile  $\pi = (\pi_i)_{i \in N}$  is a Nash equilibrium iff for each player i and strategies  $s, s' \in S_{t_i}$  with  $\pi_i(s) > 0$  we have

$$\sum_{e \in s} \mathbb{E}[c_e(W_e) | X_{i,e} = 1] \leq \sum_{e \in s'} \mathbb{E}[c_e(W_e) | X_{i,e} = 1]$$

- ACGs with identical weights  $w_i \equiv \bar{w}$  are potential games and admit pure equilibria (Rosenthal'73).
- For heterogeneous weights we only have the existence of mixed equilibria.

- ACGs with identical weights  $w_i \equiv \bar{w}$  are potential games and admit pure equilibria (Rosenthal'73).
- For heterogeneous weights we only have the existence of mixed equilibria.

Example. A 2-player routing game with equal weights  $w_i = 1$ 



イロト イポト イヨト イヨト

- ACGs with identical weights  $w_i \equiv \bar{w}$  are potential games and admit pure equilibria (Rosenthal'73).
- For heterogeneous weights we only have the existence of mixed equilibria.

Example. A 2-player routing game with equal weights  $w_i = 1$ 



Example: Routing 10 players over 2 identical parallel links.



イロト イポト イヨト イヨト

# Wardrop Convergence for Vanishing Weights

#### Theorem

Consider an arbitrary sequence  $\pi^n$  of mixed equilibria for a sequence of weighted ACGs with player sets  $N = \{1, ..., n\}$  and weights  $w_i^n$  such that

$$\begin{cases} a) \quad \max_{i \in N} w_i^n \to 0 \\ b) \quad (\forall t \in T) \quad d_t^n \triangleq \sum_{i:t_i^n = t} w_i^n \to d_t \end{cases}$$

Then

イロト イポト イヨト イヨト

# Wardrop Convergence for Vanishing Weights

#### Theorem

Consider an arbitrary sequence  $\pi^n$  of mixed equilibria for a sequence of weighted ACGs with player sets  $N = \{1, ..., n\}$  and weights  $w_i^n$  such that

$$\begin{cases} a) \quad \max_{i \in N} w_i^n \to 0 \\ b) \quad (\forall t \in T) \quad d_t^n \triangleq \sum_{i:t_i^n = t} w_i^n \to d_t \end{cases}$$

#### Then

• The sequence  $y^n$  of expected strategy loads  $y^n_s = \sum_i w^n_i \pi^n_i(s)$  is bounded and each accumulation point  $\bar{y}$  is a Wardrop equilibrium for the nonatomic game with demands  $d_t$  and costs  $c_e(\cdot)$ .

Sar

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

# Wardrop Convergence for Vanishing Weights

#### Theorem

Consider an arbitrary sequence  $\pi^n$  of mixed equilibria for a sequence of weighted ACGs with player sets  $N = \{1, ..., n\}$  and weights  $w_i^n$  such that

$$\begin{cases} a) \quad \max_{i \in N} w_i^n \to 0 \\ b) \quad (\forall t \in T) \quad d_t^n \triangleq \sum_{i:t_i^n = t} w_i^n \to d_t \end{cases}$$

Then

- The sequence  $y^n$  of expected strategy loads  $y^n_s = \sum_i w^n_i \pi^n_i(s)$  is bounded and each accumulation point  $\bar{y}$  is a Wardrop equilibrium for the nonatomic game with demands  $d_t$  and costs  $c_e(\cdot)$ .
- Along any convergent subsequence, the random resource-loads W<sup>n</sup><sub>e</sub> converge in distribution to the constant resource-loads x

  <sub>e</sub> in the Wardrop equilibrium y
  .

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

# Wardrop Convergence for Vanishing Weights

#### Theorem

Consider an arbitrary sequence  $\pi^n$  of mixed equilibria for a sequence of weighted ACGs with player sets  $N = \{1, ..., n\}$  and weights  $w_i^n$  such that

$$\begin{cases} a) \quad \max_{i \in N} w_i^n \to 0 \\ b) \quad (\forall t \in T) \quad d_t^n \triangleq \sum_{i:t_i^n = t} w_i^n \to d_t \end{cases}$$

Then

- The sequence  $y^n$  of expected strategy loads  $y^n_s = \sum_i w^n_i \pi^n_i(s)$  is bounded and each accumulation point  $\bar{y}$  is a Wardrop equilibrium for the nonatomic game with demands  $d_t$  and costs  $c_e(\cdot)$ .
- Along any convergent subsequence, the random resource-loads W<sup>n</sup><sub>e</sub> converge in distribution to the constant resource-loads x

  <sub>e</sub> in the Wardrop equilibrium y
  .

Remark: If the  $c_e(\cdot)$ 's are strictly monotone, then  $\bar{x}$  is unique and  $W_e^n \xrightarrow{\mathscr{D}} \bar{x}_e$ .

<□> <同> <同> < 目> < 目> < 目> = - のへで

## Stochastic Atomic Congestion Games

A stochastic atomic congestion game features finitely many players  $i \in N$  with types  $t_i \in T$ , unit weights  $w_i = 1$ , and a probability of being active

$$p_i = \mathbb{P}(Y_i = 1).$$

<ロト < 課 > < 注 > < 注 > 」 注 の < @</p>

## Stochastic Atomic Congestion Games

A stochastic atomic congestion game features finitely many players  $i \in N$  with types  $t_i \in T$ , unit weights  $w_i = 1$ , and a probability of being active

$$p_i = \mathbb{P}(Y_i = 1).$$

As before  $X_{i,e} = \mathbb{1}_{\{e \in s_i\}}$  indicates whether player *i* uses resource *e*, so that denoting  $Y_{i,e} = Y_i X_{i,e}$ , the total resource-loads are

$$N_e = \sum_{i \in N} Y_{i,e}.$$

◆ロ> ◆母> ◆臣> ◆臣> ―臣 - のへで

## Stochastic Atomic Congestion Games

A stochastic atomic congestion game features finitely many players  $i \in N$  with types  $t_i \in T$ , unit weights  $w_i = 1$ , and a probability of being active

$$p_i = \mathbb{P}(Y_i = 1).$$

As before  $X_{i,e} = \mathbb{1}_{\{e \in s_i\}}$  indicates whether player *i* uses resource *e*, so that denoting  $Y_{i,e} = Y_i X_{i,e}$ , the total resource-loads are

$$N_e = \sum_{i \in N} Y_{i,e}.$$

A strategy profile  $\pi = (\pi_i)_{i \in \mathbb{N}}$  is a Bayes-Nash equilibrium if for each player i and strategies  $s, s' \in S_{t_i}$  with  $\pi_i(s) > 0$  we have

$$\sum_{e \in s} \mathbb{E}[c_e(N_e)|Y_{i,e}=1] \leq \sum_{e \in s'} \mathbb{E}[c_e(N_e)|Y_{i,e}=1].$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## Stochastic Atomic Congestion Games

A stochastic atomic congestion game features finitely many players  $i \in N$  with types  $t_i \in T$ , unit weights  $w_i = 1$ , and a probability of being active

$$p_i = \mathbb{P}(Y_i = 1).$$

As before  $X_{i,e} = \mathbb{1}_{\{e \in s_i\}}$  indicates whether player *i* uses resource *e*, so that denoting  $Y_{i,e} = Y_i X_{i,e}$ , the total resource-loads are

$$N_e = \sum_{i \in N} Y_{i,e}.$$

A strategy profile  $\pi = (\pi_i)_{i \in \mathbb{N}}$  is a Bayes-Nash equilibrium if for each player *i* and strategies  $s, s' \in S_{t_i}$  with  $\pi_i(s) > 0$  we have

$$\sum_{e \in s} \mathbb{E}[c_e(N_e)|Y_{i,e}=1] \leq \sum_{e \in s'} \mathbb{E}[c_e(N_e)|Y_{i,e}=1].$$

REMARK. The costs  $c_e(\cdot)$  need only be defined over the integers  $c_e : \mathbb{N} \to \mathbb{R}_+$ , and the continuity assumption becomes irrelevant.

(Institut Henri Poincaré)

イロト イポト イヨト イヨト

# Stochastic ACGs are Potential Games

#### Theorem

Every stochastic ACG is a potential game, hence it has pure Nash equilibria, with potential given by

$$\Phi(s) riangleq \mathbb{E}\left[\sum_{e \in E} \sum_{k=1}^{N_e(s)} c_e(k)
ight]$$

where  $N_e(s) = \sum_{i \in N} Y_i \mathbb{1}_{\{e \in s_i\}}$ .

#### Theorem

Let  $\pi^n$  be an arbitrary sequence of Bayes-Nash equilibria for a sequence of stochastic ACGs with unit weights  $w_i = 1$  and probabilities  $p_i^n$  such that

$$\begin{cases} a) \quad \max_{i \in N} p_i^n \to 0 \\ b) \quad (\forall t \in T) \quad d_t^n \triangleq \sum_{i:t_i^n = t} p_i^n \to d_t \end{cases}$$

#### Theorem

Let  $\pi^n$  be an arbitrary sequence of Bayes-Nash equilibria for a sequence of stochastic ACGs with unit weights  $w_i = 1$  and probabilities  $p_i^n$  such that

$$\begin{cases} a) \quad \max_{i \in N} p_i^n \to 0 \\ b) \quad (\forall t \in T) \quad d_t^n \triangleq \sum_{i: t_i^n = t} p_i^n \to d_t \end{cases}$$

Suppose further that  $\mathbb{E}[X^2c_e(1+X)] < \infty$  for every  $X \sim \mathrm{Poisson}(x)$ , and set

$$\tilde{c}_e(x) \triangleq \mathbb{E}[c_e(1+X)] = \sum_{k=0}^{\infty} c_e(1+k)e^{-x\frac{x^k}{k!}}.$$

Then

#### Theorem

Let  $\pi^n$  be an arbitrary sequence of Bayes-Nash equilibria for a sequence of stochastic ACGs with unit weights  $w_i = 1$  and probabilities  $p_i^n$  such that

$$\begin{cases} a) \quad \max_{i \in N} p_i^n \to 0 \\ b) \quad (\forall t \in T) \quad d_t^n \triangleq \sum_{i: t_i^n = t} p_i^n \to d_t \end{cases}$$

Suppose further that  $\mathbb{E}[X^2c_e(1+X)] < \infty$  for every  $X \sim \operatorname{Poisson}(x)$ , and set

$$\tilde{c}_e(x) \triangleq \mathbb{E}[c_e(1+X)] = \sum_{k=0}^{\infty} c_e(1+k)e^{-x\frac{x^k}{k!}}.$$

Then

The sequence y<sup>n</sup> of expected strategy loads y<sup>n</sup><sub>s</sub> = ∑<sub>i</sub> p<sup>n</sup><sub>i</sub>π<sup>n</sup><sub>i</sub>(s) is bounded and each accumulation point ỹ is a Wardrop equilibrium for the non-atomic congestion game with demands d<sub>t</sub> and costs č<sub>e</sub>(·).

#### Theorem

Let  $\pi^n$  be an arbitrary sequence of Bayes-Nash equilibria for a sequence of stochastic ACGs with unit weights  $w_i = 1$  and probabilities  $p_i^n$  such that

$$\begin{cases} a) \quad \max_{i \in N} p_i^n \to 0 \\ b) \quad (\forall t \in T) \quad d_t^n \triangleq \sum_{i: t_i^n = t} p_i^n \to d_t \end{cases}$$

Suppose further that  $\mathbb{E}[X^2c_e(1+X)] < \infty$  for every  $X \sim \operatorname{Poisson}(x)$ , and set

$$\tilde{c}_e(x) \triangleq \mathbb{E}[c_e(1+X)] = \sum_{k=0}^{\infty} c_e(1+k)e^{-x\frac{x^k}{k!}}.$$

Then

- The sequence y<sup>n</sup> of expected strategy loads y<sup>n</sup><sub>s</sub> = ∑<sub>i</sub> p<sup>n</sup><sub>i</sub>π<sup>n</sup><sub>i</sub>(s) is bounded and each accumulation point ỹ is a Wardrop equilibrium for the non-atomic congestion game with demands d<sub>t</sub> and costs c̃<sub>e</sub>(·).
- Along any convergent subsequence, the random resource-loads N<sup>n</sup><sub>e</sub> converge in distribution to a Poisson random variable N<sub>e</sub> ~ Poisson(x̃<sub>e</sub>), with x̃<sub>e</sub> the resource-loads in the corresponding Wardrop equilibrium ỹ.

イロト イポト イヨト イヨト

## Poisson convergence for vanishing probabilities

#### Corollary

If the costs  $c_e : \mathbb{N} \to \mathbb{R}_+$  are monotone and non-constant, then  $\tilde{c}_e(\cdot)$  are strictly monotone. Hence, the resource-loads  $\tilde{x}_e$  are the same in any Wardrop equilibrium, and for every sequence  $\pi^n$  of Bayes-Nash equilibria we have

$$N_e^n \stackrel{\mathscr{D}}{\to} N_e \sim Poisson(\tilde{x}_e).$$

Sar

- **9** Both  $w_i^n \to 0$  and  $p_i^n \to 0$  lead to different non-atomic games in the limit.
  - For vanishing weights, the random resource-loads  $W_e^n$  converge in distribution to the constants resource-loads  $\bar{x}_e$ .
  - For vanishing probabities, N<sup>n</sup><sub>e</sub> remain random in the limit and converge in distribution to some N<sub>e</sub> ~ Poisson(x<sub>e</sub>).

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - 釣��

- **9** Both  $w_i^n \to 0$  and  $p_i^n \to 0$  lead to different non-atomic games in the limit.
  - For vanishing weights, the random resource-loads  $W_e^n$  converge in distribution to the constants resource-loads  $\bar{x}_e$ .
  - For vanishing probabities, N<sup>n</sup><sub>e</sub> remain random in the limit and converge in distribution to some N<sub>e</sub> ~ Poisson(x<sub>e</sub>).
- **②** The latter seems more appropriate to capture the randomness observed in real networks. Also  $p_i^n \rightarrow 0$  is quite natural... congestion depends on players that are present on a small window around your departure time.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - 釣��

- **9** Both  $w_i^n \to 0$  and  $p_i^n \to 0$  lead to different non-atomic games in the limit.
  - For vanishing weights, the random resource-loads  $W_e^n$  converge in distribution to the constants resource-loads  $\bar{x}_e$ .
  - For vanishing probabities, N<sup>n</sup><sub>e</sub> remain random in the limit and converge in distribution to some N<sub>e</sub> ~ Poisson(x<sub>e</sub>).
- **②** The latter seems more appropriate to capture the randomness observed in real networks. Also  $p_i^n \rightarrow 0$  is quite natural... congestion depends on players that are present on a small window around your departure time.
- The Poisson limit can be shown to be a special case of Myerson's Poisson games (Int J Game Theory 1998): the normalized limit flows  $\sigma(s|t) = \tilde{y}_s/d_t$  for  $s \in S_t$  are in fact an equilibrium in the Poisson game.

<ロト < 課 > < 注 > < 注 > 」 注 の < @</p>

- **9** Both  $w_i^n \to 0$  and  $p_i^n \to 0$  lead to different non-atomic games in the limit.
  - For vanishing weights, the random resource-loads  $W_e^n$  converge in distribution to the constants resource-loads  $\bar{x}_e$ .
  - For vanishing probabities, N<sup>n</sup><sub>e</sub> remain random in the limit and converge in distribution to some N<sub>e</sub> ~ Poisson(x<sub>e</sub>).
- **②** The latter seems more appropriate to capture the randomness observed in real networks. Also  $p_i^n \rightarrow 0$  is quite natural... congestion depends on players that are present on a small window around your departure time.
- The Poisson limit can be shown to be a special case of Myerson's Poisson games (Int J Game Theory 1998): the normalized limit flows  $\sigma(s|t) = \tilde{y}_s/d_t$  for  $s \in S_t$  are in fact an equilibrium in the Poisson game.
- However, Poisson games were defined without reference to a limit process, so the convergence result seems new. Also the connection between Poisson games and nonatomic games seems to be novel.

#### Introduction

#### Convergence of Congestion Games

- Nonatomic games and Wardrop equilibria
- Weighted atomic games: convergence of Nash equilibria
- Stochastic atomic games: convergence of Bayes-Nash equilibria

#### Price-of-Anarchy for Stochastic ACGs with Affine Costs

- Upper bounds
- Lower bounds
- Price-of-Stability

イロト イポト イヨト イヨト

## Stochastic ACGs with Homogeneous Players

From now on we consider Stochastic ACGs with homogeneous players with unit weights  $w_i \equiv 1$  and the same probabilities of being active  $\mathbb{P}(Y_i = 1) \equiv p$ .

## Stochastic ACGs with Homogeneous Players

From now on we consider Stochastic ACGs with homogeneous players with unit weights  $w_i \equiv 1$  and the same probabilities of being active  $\mathbb{P}(Y_i = 1) \equiv p$ .

#### Proposition

A Stochastic ACG with homogeneous players is equivalent to a deterministic unweighted ACG for the auxiliary costs

 $c_e^p(k) = \mathbb{E}[c_e(1+B)]$  with  $B \sim \text{Binomial}(k-1, p)$ 

イロン 不同 とくほう 不良 とうせい

## Stochastic ACGs with Homogeneous Players

From now on we consider Stochastic ACGs with homogeneous players with unit weights  $w_i \equiv 1$  and the same probabilities of being active  $\mathbb{P}(Y_i = 1) \equiv p$ .

#### Proposition

A Stochastic ACG with homogeneous players is equivalent to a deterministic unweighted ACG for the auxiliary costs

 $c_e^p(k) = \mathbb{E}[c_e(1+B)]$  with  $B \sim \text{Binomial}(k-1, p)$ 

We are interested in how the Price-of-Anarchy varies as a function of p when we move from the deterministic case p = 1 to the limit when  $p \downarrow 0$ .

## PoA for Bayes-Nash Equilibria

The expected cost for player *i* is

$$C_i^p(\pi) = p \mathbb{E}\left[\sum_{e \in E} X_{i,e} c_e^p(N_e)\right]$$

and the total social cost is

$$C^p(\pi) = \sum_{i \in N} C^p_i(\pi) = p \mathbb{E} \left[ \sum_{e \in E} N_e c^p_e(N_e) \right].$$

A strategy profile  $\pi^*$  minimizing  $C^p(\cdot)$  is called a social optimum.

イロト 不得 トイヨト イヨト 二日

## PoA for Bayes-Nash Equilibria

The expected cost for player *i* is

$$C_i^p(\pi) = p \mathbb{E}\left[\sum_{e \in E} X_{i,e} c_e^p(N_e)\right]$$

and the total social cost is

$$C^{p}(\pi) = \sum_{i \in N} C^{p}_{i}(\pi) = p \mathbb{E} \left[ \sum_{e \in E} N_{e} c^{p}_{e}(N_{e}) \right].$$

A strategy profile  $\pi^*$  minimizing  $C^p(\cdot)$  is called a social optimum.

$$PoA(p) = \sup_{\mathcal{G}p} \max_{\pi \in \mathscr{E}(\mathcal{G}p)} \frac{\mathcal{C}^{p}(\pi)}{\mathcal{C}^{p}(\pi^{*})}$$
(Price-of-Anarchy)  
$$PoS(p) = \sup_{\mathcal{G}p} \min_{\pi \in \mathscr{E}(\mathcal{G}p)} \frac{\mathcal{C}^{p}(\pi)}{\mathcal{C}^{p}(\pi^{*})}$$
(Price-of-Stability)

イロト 不得 トイヨト イヨト 二日

#### Equivalent Deterministic Game for Affine Costs

From now on we restrict to affine costs  $c_e(x) = a_e + b_e x$  with  $a_e, b_e \ge 0$ . Hence

$$egin{array}{rcl} \mathcal{C}_{e}^{
ho}(k) &=& \mathbb{E}[c_{e}(1+B(k-1,p))] \ &=& a_{e}+b_{e}(1+(k-1)p) \ &=& a_{e}^{
ho}+b_{e}^{
ho}\,k \end{array}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ Q Q @

#### Equivalent Deterministic Game for Affine Costs

From now on we restrict to affine costs  $c_e(x) = a_e + b_e x$  with  $a_e, b_e \ge 0$ . Hence

$$c_e^p(k) = \mathbb{E}[c_e(1 + B(k-1, p))]$$
  
=  $a_e + b_e(1 + (k-1)p)$   
=  $a_e^p + b_e^p k$ 

Example. Stochastic routing game with 2 homogeneous players



◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

## **Related Literature**

- Related models
  - Non-atomic with stochastic demand (Wang, Doan and Chen, 2014; Correa, Hoeksma and Schröder, 2019)
  - Smoothness with incomplete information (Roughgarden, 2015)
  - Perception based (Kleer and Schäfer, 2018)

## **Related Literature**

- Related models
  - Non-atomic with stochastic demand (Wang, Doan and Chen, 2014; Correa, Hoeksma and Schröder, 2019)
  - Smoothness with incomplete information (Roughgarden, 2015)
  - Perception based (Kleer and Schäfer, 2018)
- PoA for congestion games with affine costs
  - $\operatorname{PoA}(\mathscr{G}) \leq \frac{4}{3}$  for non-atomic (Roughgarden and Tardos, 2002)
  - $PoA(\mathscr{G}) \leq \frac{5}{2}$  for atomic deterministic (Christodoulou and Koutsoupias, 2005; Awerbuch, Azar and Epstein, 2005)

## Related Literature

- Related models
  - Non-atomic with stochastic demand (Wang, Doan and Chen, 2014; Correa, Hoeksma and Schröder, 2019)
  - Smoothness with incomplete information (Roughgarden, 2015)
  - Perception based (Kleer and Schäfer, 2018)
- PoA for congestion games with affine costs
  - $\operatorname{PoA}(\mathscr{G}) \leq \frac{4}{3}$  for non-atomic (Roughgarden and Tardos, 2002)
  - $PoA(\mathscr{G}) \leq \frac{5}{2}$  for atomic deterministic (Christodoulou and Koutsoupias, 2005; Awerbuch, Azar and Epstein, 2005)

As a consequence of the latter we get  $\operatorname{PoA}(p) \leq \frac{5}{2}$ .

But we can find sharper bounds... and we expect  $\operatorname{PoA}(p) \sim \frac{4}{3}$  for small p.

<ロト < 課 > < 注 > < 注 > 」 注 の < @</p>

#### Upper bounds

## Smoothness Framework

#### Lemma (Roughgarden, 2015)

Let  $\mathscr{G}$  be an unweighted atomic congestion game which is  $(\lambda, \mu)$ -smooth with  $\lambda > 0$  and  $\mu \in (0, 1)$ , that is to say

$$(\forall s, s' \in S) \quad \sum_{i \in N} C_i(s'_i, s_{-i}) \leq \lambda C(s') + \mu C(s).$$

Then we have  $\operatorname{PoA}(\mathscr{G}) \leq \frac{\lambda}{1-\mu}$ .

#### Upper bounds

#### Smoothness Framework

#### Lemma

Let  $\mathscr{P} = \{(k,m) \in \mathbb{N}^2 : k \geq 1\}$  and suppose that  $\lambda > 0$  and  $\mu \in (0,1)$  satisfy

$$k(1+pm) \leq \lambda k(1-p+pk) + \mu m(1-p+pm) \quad \forall (k,m) \in \mathscr{P}.$$
 (1)

Then every stochastic ACG  $\mathscr{G}^p$  with homogeneous players and affine costs is  $(\lambda, \mu)$ -smooth, and therefore  $\operatorname{PoA}(p) \leq \frac{\lambda}{1-\mu}$ .

<□> <同> <同> < 目> < 目> < 目> = - のへで

#### Upper bounds

## Smoothness Framework

#### Lemma

Let  $\mathscr{P} = \{(k,m) \in \mathbb{N}^2 : k \geq 1\}$  and suppose that  $\lambda > 0$  and  $\mu \in (0,1)$  satisfy

$$k(1+pm) \leq \lambda k(1-p+pk) + \mu m(1-p+pm) \quad \forall (k,m) \in \mathscr{P}.$$
 (1)

Then every stochastic ACG  $\mathscr{G}^{p}$  with homogeneous players and affine costs is  $(\lambda, \mu)$ -smooth, and therefore  $\operatorname{PoA}(p) \leq \frac{\lambda}{1-\mu}$ .

The best combination of  $\lambda$  and  $\mu$  for fixed *p* requires to solve

$$B(p) \triangleq \min_{\lambda > 0, \mu \in (0,1)} \left\{ \frac{\lambda}{1-\mu} : \text{ subject to } (1) \right\}$$

which reduces to a 1D problem noting that the smallest  $\lambda$  compatible with (1) is

$$\lambda = \sup_{(k,m)\in\mathscr{P}} \frac{k(1+pm)-\mu m(1-p+pm)}{k(1-p+pk)}$$

#### Smoothness Framework

The previous reduction leads to the equivalent minimization problem

$$B(p) = \inf_{\mu \in (0,1)} \varphi_p(\frac{\mu}{1-\mu}) = \inf_{y>0} \varphi_p(y)$$

where  $\varphi_p(\cdot)$  is the convex envelop function

$$\varphi_p(y) = \sup_{(k,m)\in\mathscr{P}} \frac{1+pm}{1-p+pk} + \frac{k(1+pm)-m(1-p+pm)}{k(1-p+pk)} y.$$

For each *p* the unique optimum *y* can be found explicitly, and then we recover the optimal combination  $(\lambda, \mu)$ .

# Upper Bounds for the Price-of-Anarchy

Set  $\bar{p}_0 = \frac{1}{4}$  and let  $\bar{p}_1 \sim 0.3774$  be the unique real root of  $8p^3 + 4p^2 = 1$ .

#### Theorem

The optimal solution for B(p) is

$$(\lambda, \mu) = \begin{cases} \begin{pmatrix} (1, \frac{1}{4}) & \text{if } 0$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ Q Q @

#### Upper Bounds for the Price-of-Anarchy



(Institut Henri Poincaré)

#### Lower Bounds for Large p



イロン 不同 とくほど 不良 とうほう

#### Lower Bounds for Small p



#### Lower Bounds for Intermediate p



#### Bounds on the Price-of-Anarchy are Tight



(Institut Henri Poincaré)

## Price-of-Anarchy vs Price-of-Stability

Combining with Kleer and Schäfer (2018), we also get tight bounds for PoS



#### Conclusion

Onvergence towards non-atomic games:

- vanishing weights  $\longrightarrow$  Wardrop
- $\bullet$  vanishing probabilities  $\longrightarrow$  Poisson
- Ight bounds on PoA/PoS for affine costs

#### Conclusion

Onvergence towards non-atomic games:

- $\bullet \ \text{vanishing weights} \longrightarrow \mathsf{Wardrop}$
- $\bullet$  vanishing probabilities  $\longrightarrow$  Poisson
- Ight bounds on PoA/PoS for affine costs
- Some open questions
  - Mixed limits: weights & probabilities
  - Bounds on PoA for heterogeneous  $p_i$ 's
  - Tight bounds for general costs: quadratic, polynomial,...
  - Continuity of PoA/PoS:

$$\operatorname{PoA}(w^n) \xrightarrow{?} \operatorname{PoA}(\mathsf{Wardrop})$$
  
 $\operatorname{PoA}(p^n) \xrightarrow{?} \operatorname{PoA}(\mathsf{Poisson})$ 

- Stronger notion of optimal: prophet vs non-prophet

## Questions ?



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ Q Q @