Atomic Congestion Games with Stochastic Demand
Convergence and Price-of-Anarchy

R. Cominetti1, M. Scarsini2, M. Schröder3, N. Stier-Moses4

1Universidad Adolfo Ibáñez
2LUISS
3RWTH Aachen
4Facebook

Network, Population and Congestion Games
Institut Henri Poincaré — April 16-17, 2019
You are planning your commute route for tomorrow.

Not sure about your departure time, nor who might be on the road.

A game with a random set of players!
Outline – Convergence

Congestion games model strategic situations that feature crowding externalities, where costs are monotone in the number of players.
Introduction

Outline – Convergence

Congestion games model strategic situations that feature crowding externalities, where costs are monotone in the number of players.

Games involving “many small players” are conveniently modeled as nonatomic games with a continuum of players.

Can we precise in which sense the discrete and continuous models are close?
Congestion games model strategic situations that feature crowding externalities, where costs are monotone in the number of players.

Games involving "many small players" are conveniently modeled as nonatomic games with a continuum of players.

Can we precise in which sense the discrete and continuous models are close?

This depends on what we mean by "small"... For instance:

- Player i has a small load $w_i \sim 0$ to be transported with certainty,
- Player i has a unit load but is present with small probability $p_i \sim 0$.

Depending on which limit we consider, we get different nonatomic models.
Outline – Price of Anarchy

Focusing on atomic congestion games with *affine costs and stochastic demands* where each player is present with probability p, we study how

$$\text{PoA}(p) = \frac{\text{Social cost of worst equilibrium}}{\text{Least possible social cost}}$$

as a function of p.

![Graph showing PoA(p) and PoS(p) as functions of p](graph.png)
Introduction

Convergence of Congestion Games

- Nonatomic games and Wardrop equilibria
- Weighted atomic games: convergence of Nash equilibria
- Stochastic atomic games: convergence of Bayes-Nash equilibria

Price-of-Anarchy for Stochastic ACGs with Affine Costs

- Upper bounds
- Lower bounds
- Price-of-Stability
A *congestion game* is described by

- a set of *resources* $e \in E$ with continuous monotone costs $c_e : \mathbb{R} \rightarrow \mathbb{R}_+$
- a set of *types* $t \in T$ with corresponding strategy sets $S_t \subseteq 2^E$
- a (continuous or discrete) *demand* $d_t \geq 0$ for each type $t \in T$
Congestion Games

A *congestion game* is described by

- a set of *resources* \(e \in E \) with continuous monotone costs \(c_e : \mathbb{R} \rightarrow \mathbb{R}_+ \)
- a set of *types* \(t \in T \) with corresponding strategy sets \(S_t \subseteq 2^E \)
- a (continuous or discrete) *demand* \(d_t \geq 0 \) for each type \(t \in T \)

Example: In routing games the resources are the edges of a network \(G = (V, E) \), \(T \) is the set of OD pairs, and \(S_t \) the paths connecting \((o_t, d_t) \).
Congestion Games

A *congestion game* is described by

- a set of *resources* \(e \in E \) with continuous monotone costs \(c_e : \mathbb{R} \to \mathbb{R}_+ \)
- a set of *types* \(t \in T \) with corresponding strategy sets \(S_t \subseteq 2^E \)
- a (continuous or discrete) *demand* \(d_t \geq 0 \) for each type \(t \in T \)

Example: In routing games the resources are the edges of a network \(G = (V, E) \), \(T \) is the set of OD pairs, and \(S_t \) the paths connecting \((o_t, d_t)\).

Non-atomic: continuous, fine grained, many players \(\rightarrow \) urban traffic

Atomic splittable: continuous, few players \(\rightarrow \) fluids, sand, telecom
Congestion Games

A *congestion game* is described by

- a set of *resources* $e \in E$ with continuous monotone costs $c_e : \mathbb{R} \rightarrow \mathbb{R}_+$
- a set of *types* $t \in T$ with corresponding strategy sets $S_t \subseteq 2^E$
- a (continuous or discrete) *demand* $d_t \geq 0$ for each type $t \in T$

Example: In routing games the resources are the edges of a network $G = (V, E)$, T is the set of OD pairs, and S_t the paths connecting (o_t, d_t).

![Diagram](image)

Non-atomic: continuous, fine grained, many players \rightarrow urban traffic

Atomic splittable: continuous, few players \rightarrow fluids, sand, telecom

Atomic unsplittable: discrete, few players \rightarrow vessels, airplanes

Stochastic: unpredictable \rightarrow packets or vehicles over a network
Non-Atomic Congestion Games

A non-atomic congestion game is characterized by continuous and perfectly divisible aggregate demands $d_t \geq 0$ for each type $t \in T$.
Non-Atomic Congestion Games

A non-atomic congestion game is characterized by continuous and perfectly divisible aggregate demands $d_t \geq 0$ for each type $t \in T$.

A Wardrop equilibrium is a decomposition of the demands $d_t = \sum_{s \in S_t} y_s$ into strategy flows $y_s \geq 0$ such that only minimum cost strategies are used, i.e.:

$$\sum_{e \in E} c_e(x_e) \geq \sum_{e \in E} c_e(x_{e}')$$
A **non-atomic congestion game** is characterized by continuous and perfectly divisible aggregate demands $d_t \geq 0$ for each type $t \in T$.

A **Wardrop equilibrium** is a decomposition of the demands $d_t = \sum_{s \in S_t} y_s$ into strategy flows $y_s \geq 0$ such that only minimum cost strategies are used, i.e.

$$(\forall t \in T)(\forall s, s' \in S_t) \quad y_s > 0 \Rightarrow \sum_{e \in s} c_e(x_e) \leq \sum_{e \in s'} c_e(x_e)$$
Non-Atomic Congestion Games

A non-atomic congestion game is characterized by continuous and perfectly divisible aggregate demands \(d_t \geq 0\) for each type \(t \in T\).

A Wardrop equilibrium is a decomposition of the demands \(d_t = \sum_{s \in S_t} y_s\) into strategy flows \(y_s \geq 0\) such that only minimum cost strategies are used, i.e.

\[
(\forall t \in T)(\forall s, s' \in S_t) \quad y_s > 0 \Rightarrow \sum_{e \in s} c_e(x_e) \leq \sum_{e \in s'} c_e(x_e)
\]

where \(x_e = \sum_{s \ni e} y_s\) are the induced resource-loads.
Atomic Splittable Congestion Games

Atomic splittable congestion games are similar to non-atomic models in that demands are continuous and can be split arbitrarily over different strategies.

The fundamental differences are:

1. There are finitely many players, each one controls a fraction of the demand.
2. Each player has a non-negligible effect on congestion and exploits her *market power* by strategically splitting the demand over the available strategies.
Atomic Splittable Congestion Games

Atomic splittable congestion games are similar to non-atomic models in that demands are continuous and can be split arbitrarily over different strategies.

The fundamental differences are:

1. There are finitely many players, each one controls a fraction of the demand.
2. Each player has a non-negligible effect on congestion and exploits her market power by strategically splitting the demand over the available strategies.

Theorem (Haurie & Marcotte, 1985)

When the number of players increases and the demand controlled by each of them tends to 0, the splittable equilibria converge to a Wardrop equilibrium.
Atomic Splittable Congestion Games

Atomic splittable congestion games are similar to non-atomic models in that demands are continuous and can be split arbitrarily over different strategies.

The fundamental differences are:

1. There are finitely many players, each one controls a fraction of the demand.
2. Each player has a non-negligible effect on congestion and exploits her market power by strategically splitting the demand over the available strategies.

Theorem (Haurie & Marcotte, 1985)

When the number of players increases and the demand controlled by each of them tends to 0, the splittable equilibria converge to a Wardrop equilibrium.

For the precise statement and subsequent generalizations, see Jacquot & Wang (2018) and references therein.

Here we address the discrete cases: unsplittable and stochastic demands.
Weighted Atomic Congestion Games

Weighted atomic congestion games feature a finite set of players $i \in N$ each one with a type $t_i \in T$ and an (unsplittable) weight $w_i > 0$.
Weighted Atomic Congestion Games

Weighted atomic congestion games feature a finite set of players $i \in N$ each one with a type $t_i \in T$ and an (unsplittable) weight $w_i > 0$.

- The total demand for type $t \in T$ is $d_t = \sum_{i: t_i = t} w_i$.
- For a strategy profile $s = (s_i)_{i \in N}$ with $s_i \in S_{t_i}$ we denote $X_{i,e} = \mathbb{1}_{\{e \in s_i\}}$.
- The corresponding resource-loads are $W_e = \sum_{i \in N} w_i X_{i,e}$.
Weighted Atomic Congestion Games

Weighted atomic congestion games feature a finite set of players $i \in N$ each one with a type $t_i \in T$ and an (unsplittable) weight $w_i > 0$.

- The total demand for type $t \in T$ is $d_t = \sum_{i:t_i=t} w_i$.
- For a strategy profile $s = (s_i)_{i \in N}$ with $s_i \in S_{t_i}$ we denote $X_{i,e} = 1_{\{e \in s_i\}}$.
- The corresponding resource-loads are $W_e = \sum_{i \in N} w_i X_{i,e}$.

Given mixed strategies $\pi_i \in \Delta(S_{t_i})$, the Bernoulli random variables $X_{i,e}$ are independent across players with $\mathbb{P}(X_{i,e} = 1) = \sum_{s_i \ni e} \pi_i(s_i)$.

Weighted Atomic Congestion Games

Weighted atomic congestion games feature a finite set of players \(i \in N \) each one with a type \(t_i \in T \) and an (unsplittable) weight \(w_i > 0 \).

- The total demand for type \(t \in T \) is \(d_t = \sum_{i : t_i = t} w_i \).
- For a strategy profile \(s = (s_i)_{i \in N} \) with \(s_i \in S_{t_i} \) we denote \(X_{i,e} = \mathbb{1}_{\{e \in s_i\}} \).
- The corresponding resource-loads are \(W_e = \sum_{i \in N} w_i X_{i,e} \).

Given mixed strategies \(\pi_i \in \Delta(S_{t_i}) \), the Bernoulli random variables \(X_{i,e} \) are independent across players with \(\mathbb{P}(X_{i,e} = 1) = \sum_{s_i \ni e} \pi_i(s_i) \).

A mixed strategy profile \(\pi = (\pi_i)_{i \in N} \) is a **Nash equilibrium** iff for each player \(i \) and strategies \(s, s' \in S_{t_i} \) with \(\pi_i(s) > 0 \) we have

\[
\sum_{e \in s} \mathbb{E}[c_e(W_e) | X_{i,e} = 1] \leq \sum_{e \in s'} \mathbb{E}[c_e(W_e) | X_{i,e} = 1]
\]
- ACGs with identical weights $w_i \equiv \bar{w}$ are potential games and admit pure equilibria (Rosenthal’73).
- For heterogeneous weights we only have the existence of mixed equilibria.
ACGs with identical weights \(w_i \equiv \bar{w} \) are potential games and admit pure equilibria (Rosenthal’73).

For heterogeneous weights we only have the existence of mixed equilibria.

Example. A 2-player routing game with equal weights \(w_i = 1 \)

\[
\begin{array}{c|cc}
& R & U \\
\hline
R & (1, 1) & (2, 3) \\
D & (3, 2) & (2, 2) \\
\end{array}
\]
ACGs with identical weights $w_i \equiv \bar{w}$ are potential games and admit pure equilibria (Rosenthal’73).

For heterogeneous weights we only have the existence of mixed equilibria.

Example. A 2-player routing game with equal weights $w_i = 1$

```
\begin{align*}
\text{Example: } \text{Routing 10 players over 2 identical parallel links.}
\end{align*}
```
Wardrop Convergence for Vanishing Weights

Theorem

Consider an arbitrary sequence π^n of mixed equilibria for a sequence of weighted ACGs with player sets $N = \{1, \ldots, n\}$ and weights w^n_i such that

\[
\begin{align*}
\text{a)} \quad & \max_{i \in N} w^n_i \to 0 \\
\text{b)} \quad & (\forall t \in T) \quad d^n_t \triangleq \sum_{i: t^n_i = t} w^n_i \to d_t
\end{align*}
\]

Then

\[
\text{...}
\]
Wardrop Convergence for Vanishing Weights

Theorem

Consider an arbitrary sequence π^n of mixed equilibria for a sequence of weighted ACGs with player sets $N = \{1, \ldots, n\}$ and weights w^n_i such that

\[
\begin{align*}
\text{a) } & \quad \max_{i \in N} w^n_i \rightarrow 0 \\
\text{b) } & \quad (\forall t \in T) \quad d^n_t \triangleq \sum_{i: t^n_i = t} w^n_i \rightarrow d_t
\end{align*}
\]

Then

1. The sequence y^n of expected strategy loads $y^n_s = \sum_i w^n_i \pi^n_i(s)$ is bounded and each accumulation point \bar{y} is a Wardrop equilibrium for the nonatomic game with demands d_t and costs $c_e(\cdot)$.

(Institut Henri Poincaré)
Wardrop Convergence for Vanishing Weights

Theorem

Consider an arbitrary sequence π^n of mixed equilibria for a sequence of weighted ACGs with player sets $N = \{1, \ldots, n\}$ and weights w^n_i such that

\[
\begin{align*}
 a) & \quad \max_{i \in N} w^n_i \to 0 \\
 b) & \quad (\forall t \in T) \quad d^n_t \triangleq \sum_{i:t^n_i = t} w^n_i \to d_t
\end{align*}
\]

Then

1. The sequence y^n of expected strategy loads $y^n_s = \sum_i w^n_i \pi^n_i(s)$ is bounded and each accumulation point \bar{y} is a Wardrop equilibrium for the nonatomic game with demands d_t and costs $c_e(\cdot)$.

2. Along any convergent subsequence, the random resource-loads W^n_e converge in distribution to the constant resource-loads \bar{x}_e in the Wardrop equilibrium \bar{y}.
Wardrop Convergence for Vanishing Weights

Theorem

Consider an arbitrary sequence π^n of mixed equilibria for a sequence of weighted ACGs with player sets $N = \{1, \ldots, n\}$ and weights w^n_i such that

\[
\begin{align*}
 a) & \quad \max_{i \in N} w^n_i \to 0 \\
 b) & \quad (\forall t \in T) \quad d^n_t \triangleq \sum_{i: t^n_i = t} w^n_i \to d_t
\end{align*}
\]

Then

1. The sequence y^n of expected strategy loads $y^n_s = \sum_i w^n_i \pi^n_i(s)$ is bounded and each accumulation point \bar{y} is a Wardrop equilibrium for the nonatomic game with demands d_t and costs $c_e(\cdot)$.

2. Along any convergent subsequence, the random resource-loads W^n_e converge in distribution to the constant resource-loads \bar{x}_e in the Wardrop equilibrium \bar{y}.

Remark: If the $c_e(\cdot)$’s are strictly monotone, then \bar{x} is unique and $W^n_e \xrightarrow{D} \bar{x}_e$.

(Institut Henri Poincaré)
Stochastic Atomic Congestion Games

A *stochastic atomic congestion game* features finitely many players $i \in N$ with types $t_i \in T$, unit weights $w_i = 1$, and a probability of being active

$$p_i = \mathbb{P}(Y_i = 1).$$
A stochastic atomic congestion game features finitely many players $i \in N$ with types $t_i \in T$, unit weights $w_i = 1$, and a probability of being active

$$p_i = \mathbb{P}(Y_i = 1).$$

As before $X_{i,e} = \mathbb{1}_{\{e \in s_i\}}$ indicates whether player i uses resource e, so that denoting $Y_{i,e} = Y_i X_{i,e}$, the total resource-loads are

$$N_e = \sum_{i \in N} Y_{i,e}.$$
Stochastic Atomic Congestion Games

A **stochastic atomic congestion game** features finitely many players $i \in N$ with types $t_i \in T$, unit weights $w_i = 1$, and a probability of being active

$$p_i = \mathbb{P}(Y_i = 1).$$

As before $X_{i,e} = \mathbb{1}_{\{e \in s_i\}}$ indicates whether player i uses resource e, so that denoting $Y_{i,e} = Y_i X_{i,e}$, the total resource-loads are

$$N_e = \sum_{i \in N} Y_{i,e}.$$

A **strategy profile** $\pi = (\pi_i)_{i \in N}$ is a **Bayes-Nash equilibrium** if for each player i and strategies $s, s' \in S_{t_i}$ with $\pi_i(s) > 0$ we have

$$\sum_{e \in s} \mathbb{E}[c_e(N_e) | Y_{i,e} = 1] \leq \sum_{e \in s'} \mathbb{E}[c_e(N_e) | Y_{i,e} = 1].$$

Remark. The costs $c_e(N_e)$ need only be defined over the integers \mathbb{N}, and the continuity assumption becomes irrelevant.
Stochastic Atomic Congestion Games

A **stochastic atomic congestion game** features finitely many players $i \in N$ with types $t_i \in T$, unit weights $w_i = 1$, and a probability of being active

$$p_i = \mathbb{P}(Y_i = 1).$$

As before $X_{i,e} = \mathbb{1}_{\{e \in s_i\}}$ indicates whether player i uses resource e, so that denoting $Y_{i,e} = Y_i X_{i,e}$, the total resource-loads are

$$N_e = \sum_{i \in N} Y_{i,e}.$$

A strategy profile $\pi = (\pi_i)_{i \in N}$ is a **Bayes-Nash equilibrium** if for each player i and strategies $s, s' \in S_{t_i}$ with $\pi_i(s) > 0$ we have

$$\sum_{e \in s} \mathbb{E}[c_e(N_e) | Y_{i,e} = 1] \leq \sum_{e \in s'} \mathbb{E}[c_e(N_e) | Y_{i,e} = 1].$$

Remark. The costs $c_e(\cdot)$ need only be defined over the integers $c_e : \mathbb{N} \to \mathbb{R}_+$, and the continuity assumption becomes irrelevant.
Stochastic ACGs are Potential Games

Theorem

Every stochastic ACG is a potential game, hence it has pure Nash equilibria, with potential given by

\[
\Phi(s) \triangleq \mathbb{E} \left[\sum_{e \in E} \sum_{k=1}^{N_e(s)} c_e(k) \right]
\]

where \(N_e(s) = \sum_{i \in N} Y_i \mathbb{1}_{\{e \in s_i\}}\).*
Poisson Convergence for Vanishing Probabilities

Theorem

Let π^n be an arbitrary sequence of Bayes-Nash equilibria for a sequence of stochastic ACGs with unit weights $w_i = 1$ and probabilities p^n_i such that

\[
\begin{align*}
 a) & \quad \max_{i \in N} p^n_i \to 0 \\
 b) & \quad (\forall t \in T) \quad d^n_t \triangleq \sum_{i : t_i^n = t} p^n_i \to d_t
\end{align*}
\]
Poisson Convergence for Vanishing Probabilities

Theorem

Let π^n be an arbitrary sequence of Bayes-Nash equilibria for a sequence of stochastic ACGs with unit weights $w_i = 1$ and probabilities p^n_i such that

\[
\begin{aligned}
& a) \quad \max_{i \in N} p^n_i \to 0 \\
& b) \quad (\forall t \in T) \quad d^n_t \triangleq \sum_{i : t^n_i = t} p^n_i \to d_t
\end{aligned}
\]

Suppose further that $\mathbb{E}[X^2 c_e(1+X)] < \infty$ for every $X \sim \text{Poisson}(x)$, and set

\[
\tilde{c}_e(x) \triangleq \mathbb{E}[c_e(1+X)] = \sum_{k=0}^{\infty} c_e(1+k) e^{-x} \frac{x^k}{k!}.
\]

Then
Poisson Convergence for Vanishing Probabilities

Theorem

Let π^n be an arbitrary sequence of Bayes-Nash equilibria for a sequence of stochastic ACGs with unit weights $w_i = 1$ and probabilities p_i^n such that

\[
\begin{align*}
 a) & \quad \max_{i \in N} p_i^n \to 0 \\
 b) & \quad (\forall t \in T) \quad d_t^n \triangleq \sum_{i : t^n_i = t} p_i^n \to d_t
\end{align*}
\]

Suppose further that $\mathbb{E}[X^2 c_e(1+X)] < \infty$ for every $X \sim \text{Poisson}(x)$, and set

\[
\tilde{c}_e(x) \triangleq \mathbb{E}[c_e(1+X)] = \sum_{k=0}^{\infty} c_e(1+k)e^{-x}\frac{x^k}{k!}.
\]

Then

1. The sequence y^n of expected strategy loads $y^n_s = \sum_i p_i^n \pi_i^n(s)$ is bounded and each accumulation point \tilde{y} is a Wardrop equilibrium for the non-atomic congestion game with demands d_t and costs $\tilde{c}_e(\cdot)$.
Poisson Convergence for Vanishing Probabilities

Theorem

Let π^n be an arbitrary sequence of Bayes-Nash equilibria for a sequence of stochastic ACGs with unit weights $w_i = 1$ and probabilities p^n_i such that

\[
\begin{cases}
 a) & \max_{i \in N} p^n_i \to 0 \\
 b) & (\forall t \in T) \quad d^n_t \triangleq \sum_{i : t^n_i = t} p^n_i \to d_t
\end{cases}
\]

Suppose further that $\mathbb{E}[X^2 c_e(1+X)] < \infty$ for every $X \sim \text{Poisson}(x)$, and set

\[
\tilde{c}_e(x) \triangleq \mathbb{E}[c_e(1+X)] = \sum_{k=0}^{\infty} c_e(1+k)e^{-x\frac{x^k}{k!}}.
\]

Then

1. The sequence y^n_s of expected strategy loads $y^n_s = \sum_i p^n_i \pi^n_i(s)$ is bounded and each accumulation point \tilde{y} is a Wardrop equilibrium for the non-atomic congestion game with demands d_t and costs $\tilde{c}_e(\cdot)$.

2. Along any convergent subsequence, the random resource-loads N^n_e converge in distribution to a Poisson random variable $N_e \sim \text{Poisson}(\tilde{x}_e)$, with \tilde{x}_e the resource-loads in the corresponding Wardrop equilibrium \tilde{y}.
Poisson convergence for vanishing probabilities

Corollary

If the costs $c_e : \mathbb{N} \rightarrow \mathbb{R}_+$ are monotone and non-constant, then $\tilde{c}_e(\cdot)$ are strictly monotone. Hence, the resource-loads \tilde{x}_e are the same in any Wardrop equilibrium, and for every sequence π^n of Bayes-Nash equilibria we have

$$N^n_e \overset{D}{\rightarrow} N_e \sim \text{Poisson}(\tilde{x}_e).$$
Summary and Comments

1. Both $w_i^n \to 0$ and $p_i^n \to 0$ lead to different non-atomic games in the limit.

 - For vanishing weights, the random resource-loads W^n_e converge in distribution to the constants resource-loads \bar{x}_e.
 - For vanishing probabilities, N^n_e remain random in the limit and converge in distribution to some $N_e \sim \text{Poisson}(\bar{x}_e)$.
Summary and Comments

1. Both $w^n_i \to 0$ and $p^n_i \to 0$ lead to different non-atomic games in the limit.
 - For vanishing weights, the random resource-loads W^n_e converge in distribution to the constants resource-loads \bar{x}_e.
 - For vanishing probabilities, N^n_e remain random in the limit and converge in distribution to some $N_e \sim \text{Poisson}(\bar{x}_e)$.

2. The latter seems more appropriate to capture the randomness observed in real networks. Also $p^n_i \to 0$ is quite natural... congestion depends on players that are present on a small window around your departure time.
Summary and Comments

1. Both $w^n_i \to 0$ and $p^n_i \to 0$ lead to different non-atomic games in the limit.
 - For vanishing weights, the random resource-loads W^n_e converge in distribution to the constants resource-loads \bar{x}_e.
 - For vanishing probabilities, N^n_e remain random in the limit and converge in distribution to some $N_e \sim \text{Poisson}(\bar{x}_e)$.

2. The latter seems more appropriate to capture the randomness observed in real networks. Also $p^n_i \to 0$ is quite natural... congestion depends on players that are present on a small window around your departure time.

3. The Poisson limit can be shown to be a special case of Myerson’s Poisson games (Int J Game Theory 1998): the normalized limit flows $\sigma(s|t) = \tilde{y}_s/d_t$ for $s \in S_t$ are in fact an equilibrium in the Poisson game.
Summary and Comments

1. Both $w^n_i \rightarrow 0$ and $p^n_i \rightarrow 0$ lead to different non-atomic games in the limit.

 - For vanishing weights, the random resource-loads W^n_e converge in distribution to the constants resource-loads \bar{x}_e.
 - For vanishing probabilities, N^n_e remain random in the limit and converge in distribution to some $N_e \sim \text{Poisson}(\bar{x}_e)$.

2. The latter seems more appropriate to capture the randomness observed in real networks. Also $p^n_i \rightarrow 0$ is quite natural... congestion depends on players that are present on a small window around your departure time.

3. The Poisson limit can be shown to be a special case of Myerson’s Poisson games (Int J Game Theory 1998): the normalized limit flows $\sigma(s|t) = \tilde{y}_s/d_t$ for $s \in S_t$ are in fact an equilibrium in the Poisson game.

4. However, Poisson games were defined without reference to a limit process, so the convergence result seems new. Also the connection between Poisson games and nonatomic games seems to be novel.
1. Introduction

2. Convergence of Congestion Games
 - Nonatomic games and Wardrop equilibria
 - Weighted atomic games: convergence of Nash equilibria
 - Stochastic atomic games: convergence of Bayes-Nash equilibria

3. Price-of-Anarchy for Stochastic ACGs with Affine Costs
 - Upper bounds
 - Lower bounds
 - Price-of-Stability
Stochastic ACGs with Homogeneous Players

From now on we consider Stochastic ACGs with homogeneous players with unit weights $w_i \equiv 1$ and the same probabilities of being active $\mathbb{P}(Y_i = 1) \equiv p$.
Stochastic ACGs with Homogeneous Players

From now on we consider Stochastic ACGs with homogeneous players with unit weights $w_i \equiv 1$ and the same probabilities of being active $\mathbb{P}(Y_i = 1) \equiv p$.

Proposition

A Stochastic ACG with homogeneous players is equivalent to a deterministic unweighted ACG for the auxiliary costs

$$c_e^p(k) = \mathbb{E}[c_e(1 + B)] \text{ with } B \sim \text{Binomial}(k-1, p)$$
Stochastic ACGs with Homogeneous Players

From now on we consider Stochastic ACGs with homogeneous players with unit weights \(w_i \equiv 1 \) and the same probabilities of being active \(\mathbb{P}(Y_i = 1) \equiv p \).

Proposition

A Stochastic ACG with homogeneous players is equivalent to a deterministic unweighted ACG for the auxiliary costs

\[
c_e^p(k) = \mathbb{E}[c_e(1 + B)] \text{ with } B \sim \text{Binomial}(k-1, p)
\]

We are interested in how the Price-of-Anarchy varies as a function of \(p \) when we move from the deterministic case \(p = 1 \) to the limit when \(p \downarrow 0 \).
PoA for Bayes-Nash Equilibria

The expected cost for player i is

$$C^p_i(\pi) = p \mathbb{E} \left[\sum_{e \in E} X_{i,e} c_e^p(N_e) \right]$$

and the total social cost is

$$C^p(\pi) = \sum_{i \in N} C^p_i(\pi) = p \mathbb{E} \left[\sum_{e \in E} N_e c_e^p(N_e) \right].$$

A strategy profile π^* minimizing $C^p(\cdot)$ is called a social optimum.
PoA for Bayes-Nash Equilibria

The expected cost for player i is

$$C^p_i(\pi) = p \mathbb{E} \left[\sum_{e \in E} X_{i,e} c_e^p(N_e) \right]$$

and the total social cost is

$$C^p(\pi) = \sum_{i \in N} C^p_i(\pi) = p \mathbb{E} \left[\sum_{e \in E} N_e c_e^p(N_e) \right].$$

A strategy profile π^* minimizing $C^p(\cdot)$ is called a social optimum.

$$\text{PoA}(p) = \sup_{\mathcal{G}_p} \max_{\pi \in \mathcal{E}(\mathcal{G}_p)} \frac{C^p(\pi)}{C^p(\pi^*)} \quad \text{(Price-of-Anarchy)}$$

$$\text{PoS}(p) = \sup_{\mathcal{G}_p} \min_{\pi \in \mathcal{E}(\mathcal{G}_p)} \frac{C^p(\pi)}{C^p(\pi^*)} \quad \text{(Price-of-Stability)}$$
Equivalent Deterministic Game for Affine Costs

From now on we restrict to affine costs \(c_e(x) = a_e + b_e x \) with \(a_e, b_e \geq 0 \). Hence

\[
c^p_e(k) = \mathbb{E}[c_e(1 + B(k-1, p))] \\
= a_e + b_e(1 + (k-1)p) \\
= a^p_e + b^p_e k
\]
Equivalent Deterministic Game for Affine Costs

From now on we restrict to affine costs \(c_e(x) = a_e + b_e x \) with \(a_e, b_e \geq 0 \). Hence

\[
c_e^p(k) = \mathbb{E}[c_e(1 + B(k-1, p))] = a_e + b_e(1 + (k-1)p) = a_e^p + b_e^p k
\]

Example. Stochastic routing game with 2 homogeneous players

\[
\begin{array}{c|cc}
 & R & U \\
\hline
R & (1, 1) & (1+p, 2+p) \\
D & (2+p, 1+p) & (2, 2) \\
\end{array}
\]
Related Literature

- Related models
 - Non-atomic with stochastic demand (Wang, Doan and Chen, 2014; Correa, Hoeksma and Schröder, 2019)
 - Smoothness with incomplete information (Roughgarden, 2015)
 - Perception based (Kleer and Schäfer, 2018)
Related Literature

- Related models
 - Non-atomic with stochastic demand (Wang, Doan and Chen, 2014; Correa, Hoeksma and Schröder, 2019)
 - Smoothness with incomplete information (Roughgarden, 2015)
 - Perception based (Kleer and Schäfer, 2018)

- PoA for congestion games with affine costs
 - $\text{PoA}(\mathcal{G}) \leq \frac{4}{3}$ for non-atomic (Roughgarden and Tardos, 2002)
 - $\text{PoA}(\mathcal{G}) \leq \frac{5}{2}$ for atomic deterministic (Christodoulou and Koutsoupias, 2005; Awerbuch, Azar and Epstein, 2005)
Related Literature

- Related models
 - Non-atomic with stochastic demand (Wang, Doan and Chen, 2014; Correa, Hoeksma and Schröder, 2019)
 - Smoothness with incomplete information (Roughgarden, 2015)
 - Perception based (Kleer and Schäfer, 2018)

- PoA for congestion games with affine costs
 - \(\text{PoA}(G) \leq \frac{4}{3} \) for non-atomic (Roughgarden and Tardos, 2002)
 - \(\text{PoA}(G) \leq \frac{5}{2} \) for atomic deterministic (Christodoulou and Koutsoupias, 2005; Awerbuch, Azar and Epstein, 2005)

As a consequence of the latter we get \(\text{PoA}(p) \leq \frac{5}{2} \).

But we can find sharper bounds... and we expect \(\text{PoA}(p) \sim \frac{4}{3} \) for small \(p \).
Smoothness Framework

Lemma (Roughgarden, 2015)

Let G be an unweighted atomic congestion game which is (λ, μ)-smooth with $\lambda > 0$ and $\mu \in (0, 1)$, that is to say

$$(\forall s, s' \in S) \sum_{i \in N} C_i(s'_i, s_{-i}) \leq \lambda C(s') + \mu C(s).$$

Then we have $\text{PoA}(G) \leq \frac{\lambda}{1-\mu}.$
Smoothness Framework

Lemma

Let $\mathcal{P} = \{(k, m) \in \mathbb{N}^2 : k \geq 1\}$ and suppose that $\lambda > 0$ and $\mu \in (0, 1)$ satisfy

\[k(1+pm) \leq \lambda k(1-p+pk) + \mu m(1-p+pm) \quad \forall (k, m) \in \mathcal{P}. \tag{1} \]

Then every stochastic ACG \mathcal{G}^p with homogeneous players and affine costs is (λ, μ)-smooth, and therefore $\text{PoA}(p) \leq \frac{\lambda}{1-\mu}$.
Smoothness Framework

Lemma

Let $\mathcal{P} = \{(k, m) \in \mathbb{N}^2 : k \geq 1\}$ and suppose that $\lambda > 0$ and $\mu \in (0, 1)$ satisfy

$$k(1+pm) \leq \lambda k(1-p+pk) + \mu m(1-p+pm) \quad \forall (k, m) \in \mathcal{P}. \quad (1)$$

Then every stochastic ACG \mathcal{G}^p with homogeneous players and affine costs is (λ, μ)-smooth, and therefore $\text{PoA}(p) \leq \frac{\lambda}{1-\mu}$.

The best combination of λ and μ for fixed p requires to solve

$$B(p) \triangleq \min_{\lambda > 0, \mu \in (0,1)} \left\{ \frac{\lambda}{1-\mu} : \text{subject to (1)} \right\}$$

which reduces to a 1D problem noting that the smallest λ compatible with (1) is

$$\lambda = \sup_{(k,m) \in \mathcal{P}} \frac{k(1+pm)-\mu m(1-p+pm)}{k(1-p+pk)}$$
Smoothness Framework

The previous reduction leads to the equivalent minimization problem

\[B(p) = \inf_{\mu \in (0,1)} \varphi_p \left(\frac{\mu}{1-\mu} \right) = \inf_{y > 0} \varphi_p(y) \]

where \(\varphi_p(\cdot) \) is the convex envelope function

\[\varphi_p(y) = \sup_{(k,m) \in \mathcal{D}} \frac{1+pm}{1-p+pk} + \frac{k(1+pm)-m(1-p+pm)}{k(1-p+pk)} y. \]

For each \(p \) the unique optimum \(y \) can be found explicitly, and then we recover the optimal combination \((\lambda, \mu)\).
Set \(\bar{p}_0 = \frac{1}{4} \) and let \(\bar{p}_1 \sim 0.3774 \) be the unique real root of \(8p^3 + 4p^2 = 1 \).

Theorem

The optimal solution for \(B(p) \) is

\[
(\lambda, \mu) = \begin{cases}
(1, \frac{1}{4}) & \text{if } 0 < p \leq \bar{p}_0, \\
\left(\frac{1+p+\sqrt{p(2+p)}}{2}, \frac{1+p-\sqrt{p(2+p)}}{2} \right) & \text{if } \bar{p}_0 \leq p \leq \bar{p}_1, \\
\left(\frac{1+2p+2p^2}{1+2p}, \frac{p}{1+2p} \right) & \text{if } \bar{p}_1 \leq p \leq 1,
\end{cases}
\]
Upper Bounds for the Price-of-Anarchy

\[
\text{PoA}(p) \leq B(p) = \begin{cases}
 \frac{4}{3} & \text{if } 0 < p \leq \bar{p}_0, \\
 \frac{1+p+\sqrt{p(2+p)}}{1-p+\sqrt{p(2+p)}} & \text{if } \bar{p}_0 \leq p \leq \bar{p}_1, \\
 1 + p + \frac{p^2}{1+p} & \text{if } \bar{p}_1 \leq p \leq 1,
\end{cases}
\]

Graph showing the function PoA(p) with points \(\bar{p}_0 \) and \(\bar{p}_1 \) marked on the graph.
Lower Bounds for Large p

$$c_e(x) = \begin{cases} x & \text{if } e = h_i \\ px & \text{if } e = g_i \\ 0 & \text{if dashed} \end{cases}$$

$$\Rightarrow \text{PoA}(G^p) = 1 + p + \frac{p^2}{1 + p}.$$
Lower Bounds for Small p

$$c_e(x) = \begin{cases}
\frac{1}{1+2kp} x & \text{if } e = \bar{e} \\
 x & \text{if } e = e_i \\
0 & \text{if dashed}
\end{cases}$$

$$\Rightarrow \text{PoA}(\mathcal{G}) = \text{PoS}(\mathcal{G}) \geq \frac{4kp+2-2p}{3kp+2-p} \to \frac{4}{3} \text{ as } k \to \infty$$
Lower Bounds for Intermediate p

\[c_e(x) = \begin{cases}
\alpha x & \text{if } e = h_i \\
x & \text{if } e = g_i \\n0 & \text{if dashed}
\end{cases} \]
Bounds on the Price-of-Anarchy are Tight

\[
\text{PoA}(p) = B(p) = \begin{cases}
\frac{4}{3} & \text{if } 0 < p \leq \bar{p}_0 \\
\frac{1+p+\sqrt{p(2+p)}}{1-p+\sqrt{p(2+p)}} & \text{if } \bar{p}_0 \leq p \leq \bar{p}_1 \\
1 + p + \frac{p^2}{1+p} & \text{if } \bar{p}_1 \leq p \leq 1
\end{cases}
\]
Price-of-Anarchy vs Price-of-Stability

Combining with Kleer and Schäfer (2018), we also get tight bounds for PoS

\[\text{PoS}(p) = \begin{cases}
4/3 & \text{if } 0 < p \leq \bar{p}_0 \\
1 + \sqrt{p/(2 + p)} & \text{if } p \geq \bar{p}_0
\end{cases} \]

\[\text{PoA}(p) \]

\[\text{PoS}(p) \]
Conclusion

1. Convergence towards non-atomic games:
 - vanishing weights \rightarrow Wardrop
 - vanishing probabilities \rightarrow Poisson

2. Tight bounds on PoA/PoS for affine costs
Conclusion

1. Convergence towards non-atomic games:
 - vanishing weights \rightarrow Wardrop
 - vanishing probabilities \rightarrow Poisson

2. Tight bounds on PoA/PoS for affine costs

3. Some open questions
 - Mixed limits: weights & probabilities
 - Bounds on PoA for heterogeneous p_i's
 - Tight bounds for general costs: quadratic, polynomial,...
 - Continuity of PoA/PoS:
 \[
 \begin{align*}
 \text{PoA}(w^n) & \xrightarrow{?} \text{PoA}(\text{Wardrop}) \\
 \text{PoA}(p^n) & \xrightarrow{?} \text{PoA}(\text{Poisson})
 \end{align*}
 \]
 - Stronger notion of optimal: prophet vs non-prophet
Questions?