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The Kelly auction

Proportionally fair allocation of resources to different clients [Kelly, 1998]:

Client 1

Client 2

Client 3

Resources

Resources could be processor cores, bandwidth , or even anonymous web traffic
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The Kelly auction

Proportionally fair allocation of resources to different clients [Kelly, 1998]:

Advertiser 1

Advertiser 2

Advertiser 3

Website traffic

Advertiser 1 
impressions

Advertiser 3 
impressions

Advertiser 2 
impressions

bid x1

bid x3

bid x2

get x1
x1 + x2 + x3

get x2
x1 + x2 + x3

get x3
x1 + x2 + x3

Resources could be processor cores, bandwidth , or even anonymous web traffic
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Online decision processes

Agents called to take repeated decisions with minimal information:

repeat

At each epoch t = , , . . .
Choose action Xt

Get payoff ut(Xt)
until end

Main question: How to choose a “good” action at each epoch?

▸ Uncertain world: no beliefs, feedback, knowledge of future, etc.

▸ Obliviousness: are payoffs affected by the agent’s previous actions?

▸ Optimality: what is “optimal” in this setting?
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Regret minimization

Performance often quantified by the agent’s regret

Reg(T) = max
x∈X

T∑
t=
[

ut(x) − ut(Xt)

]

No regret: Reg(T) = o(T)
“The sequence of chosen actions is as good as the best fixed action in hindsight.”

Prolific literature:
▸ Economics [Hannan, Blackwell, Hart & Mas-Colell,…]

▸ Machine learning & computer science [Littlestone &Warmuth, Vovk,…]

▸ Online learning & optimization [Cesa-Bianchi & Lugosi, Zinkevich,…]
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Multi-agent learning

▸ Multiple agents, individual objectives

Example: place a bid in a repeated auction

▸ Payoffs determined by actions of all agents

Example: outcome of auction revealed

▸ Agents receive payoffs, adjust actions, and the process repeats

Example: change bid if unsatisfied
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No-regret and equilibrium

The golden rule:

No-regret learning leads to equilibrium

∗

∗If it’s ok to:

✗ Assign positive weight only to strictly dominated strategies
[Viossat & Zapechelnyuk, 2013]

✗ Be arbitrarily far from equilibrium infinitely often
[too many to list]

✗ ⋯
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No-regret and equilibrium

When does no-regret learning converge to Nash equilibrium?

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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N-player games

The game
▸ Finite set of players i ∈N = {, . . . ,N}
▸ Each player selects an action xi from a compact convex set Xi▸ Reward of player i determined by payoff function ui ∶X ≡∏i Xi → R

Examples
▸ Finite games (mixed extensions)
▸ Power control/allocation problems
▸ Traffic routing
▸ Generative adversarial networks (two-player zero-sum games)
▸ Divisible good auctions (Kelly,…)
▸ Cournot oligopolies
▸ ⋯

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Kelly auctions

The Kelly auction as an N-player game:

▸ Players: i = , . . . ,N [bidders]

▸ Resources S = {, . . . , S} [websites]

▸ Action spaces: Xi = {xi ∈ RS+ ∶ ∑s xis ≤ bi} [bi : budget of i-th bidder]

▸ Resource allocation ratio:

ρ i s(x) = qsxis
cis +∑ j∈N x js

[cis : entry barrier]

▸ Payoff functions:
ui(x) =∑

s∈S
[дiρ i s(x) − xi]

[utility from resources minus cost]

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Nash equilibrium

Nash equilibrium
Action profile x∗ = (x∗ , . . . , x∗t ) ∈ X that is unilaterally stable

ui(x∗i ; x∗−i) ≥ ui(xi ; x∗−i) for every player i ∈N and every deviation xi ∈ Xi

Individual payoff gradients

Vi(x) = ∇xi ui(xi ; x−i)
Interpretation: direction of individually steepest payoff ascent

Variational characterization
If x∗ is a Nash equilibrium, then

⟨Vi(x∗), xi − x∗i ⟩ ≤  for all i ∈N , xi ∈ Xi

Intuition: ui(xi ; x∗−i) decreasing along all rays emanating from x∗i

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Geometric interpretation

X

TC(x∗)

NC(x∗)

.x
∗

V(x∗)

At Nash equilibrium, individual payoff gradients are outward-pointing

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Monotonicity

A key assumption for games ismonotonicity:

⟨V(x′) − V(x), x′ − x⟩ ≤  for all x ∈ X (MC)

Equivalently: H(x) ≼  where H is the game’s Hessian matrix:

Hi j(x) = 

∇x j∇x j ui(x) + 


(∇xi∇x j u j(x))⊺

Interpretation: concavity for games

Examples: Kelly auctions, Cournot oligopolies, routing, power control, …

Close relatives:
▸ Stable games [Hofbauer & Sandholm, 2009]
▸ Contractive games [Sandholm, 2015];
▸ Dissipative [Sorin & Wan, 2016]

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Monotonicity

Theorem (Rosen, 1965)
If a game is strictly monotone, it admits a unique Nash equilibrium.

[+ extensions to {…}-monotone games, generalized equilibrium problems,…]

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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How to achieve no regret?

Take a gradient step and project: [Zinkevich, ICML 2003]

Xt+ = Π(Xt + γt∇ut(Xt)) (OGD)

X

X

.
.X

X

γ∇u(X)
Π

γ∇u(X)
Π

Reg(T) = O(T /) for suitable γt ; optimal in T [Abernethy et al, 2008]

…but what about convergence?
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A dynamical systems viewpoint

Vector flow of V (simplest case: no constraints, smooth, etc.):

dXi

dt
= −Vi(X(t)) (GD)

Energy function:

E(x) = 

∥x − x∗∥

Lyapunov property:
dE
dt
= −⟨V(X(t)), X(t) − x∗⟩ ≤ 

Distance to solutions is (weakly) decreasing along trajectories of (GD)

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Cycles

Roadblock: the energy might be a constant of motion [Hofbauer et al, 2009]
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Figure: Hamiltonian flow of f (x , x) = xx .
P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Poincaré recurrence

Cycles are an example of recurrence:

Definition (Poincaré, 1890’s)
A dynamical system is Poincaré recurrent if almost all solution trajectories return
arbitrarily close to their starting point infinitely many times.

Theorem (M, Papadimitriou, Piliouras, SODA 2018; bare-bones version)
(GD) is recurrent in all bilinear saddle-point problems with an interior solution.

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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OGD in games

OGD as a forward (Euler) scheme:

X+ = X − γV(X)

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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OGD in games

OGD as a forward (Euler) scheme:

X+ = X − γV(X)

Energy no longer a constant:



∥X+ − x∗∥ = 


∥X − x∗∥ − γ ⟨V(X), X − x∗⟩$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'

from (GD)

+ 

γ∥V(X)∥$%%%%%%%%%%%%%%%%%%%%%%&%%%%%%%%%%%%%%%%%%%%%%'
discretization error

…even worse
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OGD in games

OGD as a forward (Euler) scheme:

Xt+ = Xt − γV(Xt)
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Time averages: a very different story

No-regret captures behavior of time-averaged process:

X̄t = 
t∑t

s= Xs
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Convergence to equilibrium

Behavior different under strictmonotonicity:



∥Xt+ − x∗∥ = 


∥Xt − x∗∥ − γt ⟨V(Xt), Xt − x∗⟩$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'<  if Xt not Nash

+ 

γt ∥V(Xt)∥$%%%%%%%%%%%%%%%%%%%%%%%%%&%%%%%%%%%%%%%%%%%%%%%%%%%'
discretization error

Can the drift overcome the discretization error?

Theorem (M & Zhou, MathProg 2019)
▸ Assume: game strictly monotone,∑t γt =∞,∑t γ


t <∞▸ Then: Xt converges to a Nash equilibrium from any initial condition

In strictly monotone games, no-regret↝ Nash equilibrium
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Feedback

(OGD) requires gradient information, which may be difficult to come by:
▸ Other players’ actions unknown
▸ Measurement errors
▸ Stochastic utilities (realized vs. expected gradients)
▸ ⋯

Imperfect gradient feedback:

V̂t = V(xt) +Ut

with the following hypotheses:

[H1] Zero-mean error: E[Ut ∣Ft−] =  [#⇒ E[V̂t ∣Ft−] = V(xt)]
[H2] Finite mean squared error: E[∥Ut∥∗ ∣Ft−] ≤ σ  [#⇒ E[∥V̂t∥∗ ∣Ft−] ≤V ]
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Learning with imperfect gradients

Algorithm 1 Stochastic gradient descent
Require: step-size sequence γt > 
1: choose X ∈ X # initialization
2: for t = , , . . . do
3: oracle query at state X returns V #gradient feedback
4: set X ← Π(X + γtV) #new state
5: end for
6: return X

Guarantees:

▸ E[Reg(T)] = O(√T) [folk]

▸ Strict monotonicity #⇒ Xt converges to Nash (a.s.) [M & Zhou, 2019]
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No gradient feedback whatsoever

In many cases, even stochastic gradients are out of reach:
▸ Multi-armed bandits (clinical trials, …)
▸ Other players’ actions unknown (auctions, …)
▸ ⋯

Possible fixes:
▸ Two-time-scale approach: fast samples, slow updates [can be slow !]
▸ Multiple-point estimates [needs synchronization !]
▸ Simultaneous perturbation stochastic approximation [Spall, 1997]
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Simultaneous perturbation stochastic approximation

Estimate u′(x) at target point x ∈ R
u′(x) ≈ u(x + δ) − u(x − δ)

δ

Pick z = ± with probability /. Then:
E[u(x + δz)z] = 


u(x + δ) − 


u(x − δ)

#⇒ Estimate u′(x) up toO(δ) by sampling u at x̂ = x + δz and looking at 
δ u(x̂)z

Algorithm 2 Single-point estimator of∇u at X

1: Draw z uniformly from Sd

2: Play X̂ = X + δz
3: Get û = u(X̂)
4: Set V̂ = d

δ ûz

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Learning with bandit feedback

X

X

.
X̂

δz

.
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Bandit gradient descent

Algorithm 3Multi-agent gradient ascent with bandit feedback

Require: step-size γt > , query radius δt > , safety ball Br(p) ⊆ X
1: choose X ∈ X # initialization
2: repeat at each stage t = , , . . .
3: draw Z uniformly from Sd #perturbation direction
4: setW ← Z − r−(X − p) # feasibility adjustment
5: play X̂ ← X + δtW #choose action
6: receive û ← u(X̂) #get payoff
7: set V̂ ← (d/δt)û ⋅ Z #estimate gradient
8: update X ← Π(X + γt V̂) #update pivot
9: until end

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Challenges

Key difficulty:
▸ One-point estimates may be biased (no more thanO(δ) accuracy)

▸ Can eliminate bias by taking decreasing δt →  but variance explodes

E[∥V̂t∥] = O(/δt )
▸ Stochastic approximation analysis requires bounded variance
▸ Bias-variance dilemma: accuracy vs. stability?
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Convergence analysis

Must balance step-size γt against query radius δt :

▸ limt→∞ γt = limt→∞ δt =  # vanishing noise and bias

▸ ∑∞t= γt =∞ # the process doesn’t stop

▸ ∑∞t= γt /δt <∞ # variance control

▸ limt→∞ γtδt =  # bias control

Theorem (Bravo, Leslie & M, NIPS 2018)
1. Under strict monotonicity, Xt converges to Nash equilibrium with probability .

2. Under strong monotonicity (H(x) ≺ −βI), γt ∝ /t, δt ∝ /t/, we have:

E[∥Xt − x∗∥] = O(/t/).
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Convergence rate

Speed of convergence in a repeated Kelly auction
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Conclusions and perspectives

Conclusions
▸ No-regret learning does not guarantee stability by itself ✗

▸ No-regret learning plus suitable monotonicity does ✓

▸ Convergence to equilibrium does not require gradient feedback ✓

Open questions
▸ Faster rates?
▸ Delayed payoff observations?
▸ Beyond monotonicity?
▸ ???
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