Bacgkround 0000000

C

V-player games 0000000 No-regret learning in games

Learning with limited feedback 00000000000

Panayotis Mertikopoulos¹

¹French National Center for Scientific Research (CNRS)

Laboratoire d'Informatique de Grenoble (LIG)

NPCG '19 - Paris, April 16, 2019

P. Mertikopoulos

000	0000 0000000	0000000	0000000000
cnrs	Outline		
	Bacgkround		
	N-player games		
	No recret learning in genera		
	No-regret learning in games		
	Learning with limited feedbac	ck	
P. Merti	kopoulos		CNRS - Laboratoire d'Informatique <u>de Grenoble</u>

Resources could be processor cores, bandwidth

Resources could be processor cores, bandwidth , or even anonymous web traffic

000	ound 0000	<i>N</i> -player games	No-regret learning in games	Learning with limited feedback
CITS	Online decision	n processes		
	Agents called t	o take repeated decis	ions with minimal information:	

repeat

```
At each epoch t = 1, 2, \ldots
```

```
Choose action X_t
```

```
Get payoff u_t(X_t)
```

until end

Bargh OOO	ound 0000	<i>N-</i> player games	No-regret learning in games	Learning with limited feedback
cnrs	Online de	ecision processes		
	Agents ca	illed to take repeated d	ecisions with minimal informatio	on:
	repeat			
	At each	epoch $t = 1, 2,$		
	Cho	ose action X_t		
	Get	payoff $u_t(X_t)$		

until end

Main question: How to choose a "good" action at each epoch?

- Uncertain world: no beliefs, feedback, knowledge of future, etc.
- Obliviousness: are payoffs affected by the agent's previous actions?
- Optimality: what is "optimal" in this setting?

000		<i>N</i> -player games	No-regret learning in games 00000000	Learning with limited feedback
cnrs	Regret m	inimization		

 $u_t(x) - u_t(X_t)$

0 000	ound ●000	<i>N-</i> player games	No-regret learning in games 00000000	Learning with limited feedback
CITS	Regret m	inimization		

$$\sum_{t=1}^{T} [u_t(x) - u_t(X_t)]$$

Bacglinound 000€000	<i>N</i> -player games	No-regret learning in games	Learning with limited feedback
CITS R	egret minimization		

$$\max_{x \in \mathcal{X}} \sum_{t=1}^{T} [u_t(x) - u_t(X_t)]$$

	<i>N</i> -player games	No-regret learning in games	Learning with limited feedback
Regree	t minimization		

$$\operatorname{Reg}(T) = \max_{x \in \mathcal{X}} \sum_{t=1}^{T} [u_t(x) - u_t(X_t)]$$

000	mund ●OOO	<i>N</i> -player games	No-regret learning in games 00000000	Learning with limited feedback
CITS	Regret m	inimization		

$$\operatorname{Reg}(T) = \max_{x \in \mathcal{X}} \sum_{t=1}^{T} [u_t(x) - u_t(X_t)]$$

No regret: $\operatorname{Reg}(T) = o(T)$

"The sequence of chosen actions is as good as the best fixed action in hindsight."

Bacgle 0000	aand •000	N-player games 0000000	No-regret learning in games 00000000	Learning with limited feedback
cnrs	Regret minimize	ation		
	Performance ofte	en quantified by the age	ent's regret	

 $\operatorname{Reg}(T) = \max_{x \in \mathcal{X}} \sum_{t=1}^{T} [u_t(x) - u_t(X_t)]$

No regret: $\operatorname{Reg}(T) = o(T)$

"The sequence of chosen actions is as good as the best fixed action in hindsight."

Prolific literature:

- Economics
- Machine learning & computer science
- Online learning & optimization

[Hannan, Blackwell, Hart & Mas-Colell,...] [Littlestone & Warmuth, Vovk,...] [Cesa-Bianchi & Lugosi, Zinkevich,...]

8000kmund 0000000	<i>N</i> -player games	No-regret learning in games	Learning with limited feedback
CITS Multi-age	ent learning		

- Multiple agents, individual objectives
- Payoffs determined by actions of all agents
- Agents receive payoffs, adjust actions, and the process repeats

Bregkound 0000●00	N-player games	No-regret learning in games	Learning with limited feedback
CITS N	lulti-agent learning		

Multiple agents, individual objectives

Example: place a bid in a repeated auction

Payoffs determined by actions of all agents

Example: outcome of auction revealed

Agents receive payoffs, adjust actions, and the process repeats

Example: change bid if unsatisfied

	<i>N-</i> player games	No-regret learning in games	Learning with limited feedback
No-regre	t and equilibrium		

No-regret learning leads to equilibrium

	<i>N-</i> player games	No-regret learning in games	Learning with limited feedback
No-regre	t and equilibrium		

No-regret learning leads to equilibrium*

* If it's ok to:

0000000	<i>N</i> -player games	No-regret learning in games	Learning with limited feedback
No-regre	t and equilibrium		

No-regret learning leads to equilibrium*

* If it's ok to:

X Assign positive weight only to strictly dominated strategies

[Viossat & Zapechelnyuk, 2013]

Bacgkround	N-player games	No-regret learning in games	Learning with limited feedback
0000000	0000000	0000000	0000000000
No-rea	gret and equilibrium		

No-regret learning leads to equilibrium*

* If it's ok to:

X Assign positive weight only to strictly dominated strategies

[Viossat & Zapechelnyuk, 2013]

X Be arbitrarily far from equilibrium infinitely often

[too many to list]

No-regret learning leads to equilibrium*

* If it's ok to:

X Assign positive weight only to strictly dominated strategies

[Viossat & Zapechelnyuk, 2013]

X Be arbitrarily far from equilibrium infinitely often

[too many to list]

Bacgkround 000000●	<i>N</i> -player games	No-regret learning in games	Learning with limited feedback
No-regre	t and equilibrium		

When does no-regret learning converge to Nash equilibrium?

0000000	000000	00000000	Learning with limited feedback
Outli	ne		
Bacg	kround		
North			
м-ры	ayer games		
No-re	egret learning in games		
Learr	ing with limited feedback		

Bacgk 000		N player games O●OOOOO	No-regret learning in games	Learning with limited feedback
CITS	N -player §	games		

The game

- Finite set of *players* $i \in \mathcal{N} = \{1, \dots, N\}$
- Each player selects an *action* x_i from a compact convex set \mathcal{X}_i
- ▶ Reward of player *i* determined by payoff function $u_i: \mathcal{X} \equiv \prod_i \mathcal{X}_i \rightarrow \mathbb{R}$

Examples

- Finite games (mixed extensions)
- Power control/allocation problems
- Traffic routing
- Generative adversarial networks (two-player zero-sum games)
- Divisible good auctions (Kelly,...)
- Cournot oligopolies

<u>ه</u> ...

	000000	
CIIS Kolly aug	tions	
Kelly duc	lions	

The Kelly auction as an *N*-player game:

- Players: i = 1,...,N [bidders]
- Resources $S = \{1, ..., S\}$ [websites]
- Action spaces: $\mathcal{X}_i = \{x_i \in \mathbb{R}^S_+ : \sum_s x_{is} \le b_i\}$ [*b*_i: budget of *i*-th bidder]
- Resource allocation ratio:

$$\rho_{is}(x) = \frac{q_s x_{is}}{c_{is} + \sum_{j \in \mathcal{N}} x_{js}}$$

[c_{is}: entry barrier]

Payoff functions:

$$u_i(x) = \sum_{s \in S} [g_i \rho_{is}(x) - x_i]$$

[utility from resources minus cost]

Bacgk 000	round National arms 0000 0000000	No-regret learning in games	Learning with limited feedback
cnrs	Nash equilibrium		

Nash equilibrium

Action profile $x^* = (x_1^*, ..., x_t^*) \in \mathcal{X}$ that is **unilaterally stable**

 $u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$ for every player $i \in \mathcal{N}$ and every deviation $x_i \in \mathcal{X}_i$

Bacgl OOC		A player games 000€000	No-regret learning in games	Learning with limited feedback
cnrs	Nas	h equilibrium		

Nash equilibrium

Action profile $x^* = (x_1^*, ..., x_t^*) \in \mathcal{X}$ that is **unilaterally stable**

 $u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$ for every player $i \in \mathcal{N}$ and every deviation $x_i \in \mathcal{X}_i$

Individual payoff gradients

$$V_i(x) = \nabla_{x_i} u_i(x_i; x_{-i})$$

Interpretation: direction of individually steepest payoff ascent

Bacgk 000		N player games OOO●OOO	No-regret learning in games	Learning with limited feedback
cnrs	Nash equili	brium		

Nash equilibrium

Action profile $x^* = (x_1^*, \dots, x_t^*) \in \mathcal{X}$ that is **unilaterally stable**

 $u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$ for every player $i \in \mathcal{N}$ and every deviation $x_i \in \mathcal{X}_i$

Individual payoff gradients

$$V_i(x) = \nabla_{x_i} u_i(x_i; x_{-i})$$

Interpretation: direction of individually steepest payoff ascent

Variational characterization

If x^* is a Nash equilibrium, then

$$\langle V_i(x^*), x_i - x_i^* \rangle \leq 0$$
 for all $i \in \mathcal{N}, x_i \in \mathcal{X}_i$

Intuition: $u_i(x_i; x_{-i}^*)$ decreasing along all rays emanating from x_i^*

		0000000	
cnrs	Geometr	ic interpretation	

At Nash equilibrium, individual payoff gradients are outward-pointing

Bacgk 000		A plater games 000000€0	No-regret learning in games 00000000	Learning with limited feedback
cnrs	Monotonicity			

A key assumption for games is **monotonicity**:

 $\langle V(x') - V(x), x' - x \rangle \le 0$ for all $x \in \mathcal{X}$ (MC)

000000	0000000	0000000	0000000000
Monotonicity			

A key assumption for games is **monotonicity**:

$$\langle V(x') - V(x), x' - x \rangle \le 0$$
 for all $x \in \mathcal{X}$ (MC)

Equivalently: $H(x) \leq 0$ where H is the game's Hessian matrix:

$$H_{ij}(x) = \frac{1}{2} \nabla_{x_j} \nabla_{x_j} u_i(x) + \frac{1}{2} (\nabla_{x_i} \nabla_{x_j} u_j(x))^{\mathsf{T}}$$

Interpretation: concavity for games

	0000000	
Monotonicit	у	

A key assumption for games is monotonicity:

$$\langle V(x') - V(x), x' - x \rangle \le 0$$
 for all $x \in \mathcal{X}$ (MC)

Equivalently: $H(x) \leq 0$ where *H* is the game's Hessian matrix:

$$H_{ij}(x) = \frac{1}{2} \nabla_{x_j} \nabla_{x_j} u_i(x) + \frac{1}{2} (\nabla_{x_i} \nabla_{x_j} u_j(x))^{\mathsf{T}}$$

Interpretation: concavity for games

Examples: Kelly auctions, Cournot oligopolies, routing, power control, ...

Close relatives:

- Stable games [Hofbauer & Sandholm, 2009]
- Contractive games [Sandholm, 2015];
- Dissipative [Sorin & Wan, 2016]

Bacg OOC		N bissergenne 000000●	No-regret learning in games	Learning with limited feedback
cnrs	Monotonicity			

Theorem (Rosen, 1965)

If a game is strictly monotone, it admits a unique Nash equilibrium.

[+ extensions to {...}-monotone games, generalized equilibrium problems,...]

Bacgkround

N-player games

No-regret learning in games

Learning with limited feedback

A dynamical systems viewpoint

Vector flow of *V* (simplest case: no constraints, smooth, etc.):

$$\frac{dX_i}{dt} = -V_i(X(t)) \tag{GD}$$

Energy function:

$$E(x) = \frac{1}{2} \|x - x^*\|^2$$

Lyapunov property:

$$\frac{dE}{dt} = -\langle V(X(t)), X(t) - x^* \rangle \le 0$$

Distance to solutions is (weakly) decreasing along trajectories of (GD)

Bacgkround 0000000	<i>N</i> -player games	No regret forming in games 000000000	Learning with limited feedback
Poincaré	recurrence		

Cycles are an example of recurrence:

Definition (Poincaré, 1890's)

A dynamical system is *Poincaré recurrent* if almost all solution trajectories return *arbitrarily close* to their starting point *infinitely many times*.

Cycles are an example of recurrence:

Definition (Poincaré, 1890's)

A dynamical system is *Poincaré recurrent* if almost all solution trajectories return *arbitrarily close* to their starting point *infinitely many times*.

Theorem (M, Papadimitriou, Piliouras, SODA 2018; bare-bones version) (GD) is recurrent in all bilinear saddle-point problems with an interior solution.

 $X^+ = X - \gamma V(X)$

 $X^+ = X - \gamma V(X)$

Energy no longer a constant:

$$\frac{1}{2} \|X^{+} - x^{*}\|^{2} = \frac{1}{2} \|X - x^{*}\|^{2} - \gamma \underbrace{\langle V(X), X - x^{*} \rangle}_{\text{from (GD)}} + \frac{1}{2} \underbrace{\gamma^{2} \|V(X)\|^{2}}_{\text{discretization error}}$$

...even worse

 $X^+ = X - \gamma V(X)$

Energy no longer a constant:

$$\frac{1}{2} \|X^{+} - x^{*}\|^{2} = \frac{1}{2} \|X - x^{*}\|^{2} - \gamma \underbrace{(V(X), X - x^{*})}_{\text{from (GD)}} + \frac{1}{2} \underbrace{\gamma^{2} \|V(X)\|^{2}}_{\text{discretization error}}$$

...even worse

$$X_{t+1} = X_t - \gamma V(X_t)$$

 Bacgkround
 N-player games
 Learning with limited feedback

 0000000
 0000000
 000000000

Time averages: a very different story

No-regret captures behavior of time-averaged process:

Cnr

Convergence to equilibrium

Behavior different under strict monotonicity:

$$\frac{1}{2} \|X_{t+1} - x^*\|^2 = \frac{1}{2} \|X_t - x^*\|^2 - \gamma_t \underbrace{\langle V(X_t), X_t - x^* \rangle}_{< 0 \text{ if } X_t \text{ not Nash}} + \frac{1}{2} \underbrace{\gamma_t^2 \|V(X_t)\|^2}_{\text{discretization error}}$$

Can the drift overcome the discretization error?

Can the drift overcome the discretization error?

Theorem (M & Zhou, MathProg 2019)

- Assume: game strictly monotone, $\sum_t \gamma_t = \infty$, $\sum_t \gamma_t^2 < \infty$
- Then: X_t converges to a Nash equilibrium from any initial condition

Can the drift overcome the discretization error?

Theorem (M & Zhou, MathProg 2019)

- Assume: game strictly monotone, $\sum_t \gamma_t = \infty$, $\sum_t \gamma_t^2 < \infty$
- Then: X_t converges to a Nash equilibrium from any initial condition

In strictly monotone games, no-regret ~ Nash equilibrium

Bacgki 0000		<i>N-</i> player games	No-regret learning in games	●0000000000
CITS	Outline			
	Bacgkround			
	N-player gam	nes		
	No-regret lea	rning in games		
	Learning with	limited feedback		

Bacgl OOC		<i>N</i> -player games	No-regret learning in games	
CNTS	Feedback			

(OGD) requires gradient information, which may be difficult to come by:

- Other players' actions unknown
- Measurement errors
- Stochastic utilities (realized vs. expected gradients)

<u>►</u> ...

Imperfect gradient feedback:

$$\hat{V}_t = V(x_t) + U_t$$

with the following hypotheses:

[H1] Zero-mean error: $\mathbb{E}[U_t | \mathcal{F}_{t-1}] = 0$ $[\implies \mathbb{E}[\hat{V}_t | \mathcal{F}_{t-1}] = V(x_t)]$ [H2] Finite mean squared error: $\mathbb{E}[||U_t||_*^2 | \mathcal{F}_{t-1}] \le \sigma^2$ $[\implies \mathbb{E}[||\hat{V}_t||_*^2 | \mathcal{F}_{t-1}] \le V^2]$

Bacgki 0004	round N-player games	No-regret learning in games	
cnrs	Learning with imperfect gradier	nts	
	Algorithm 1 Stochastic gradient de	escent	
	Require: step-size sequence γ_t >	0	
	1: choose $X \in \mathcal{X}$		# initialization
	2: for <i>t</i> = 1, 2, do		
	3: oracle query at state X retu	urns V	#gradient feedback
	4: set $X \leftarrow \Pi(X + \gamma_t V)$		# new state
	5: end for		
	6: return X		

Bacgki 0004	round <i>N-</i> player games	No-regret learning in games	
oprs	Learning with imperfect gradients		
	Algorithm 1 Stochastic gradient desce	nt	
	Require: step-size sequence $\gamma_t > 0$		
	1: choose $X \in \mathcal{X}$		# initialization
	2: for $t = 1, 2,$ do		
	3: oracle query at state X returns	V	# gradient feedback
	4: set $X \leftarrow \Pi(X + \gamma_t V)$		# new state
	5: end for		
	6. return X		

Guarantees:

- $\blacktriangleright \mathbb{E}[\operatorname{Reg}(T)] = \mathcal{O}(\sqrt{T})$ [folk]
- Strict monotonicity $\implies X_t$ converges to Nash (a.s.)

[M & Zhou, 2019]

0000000	0000000	0000000	0000000000

In many cases, even stochastic gradients are out of reach:

- Multi-armed bandits (clinical trials, ...)
- Other players' actions unknown (auctions, ...)

<u>►</u> ...

	0000000000

In many cases, even stochastic gradients are out of reach:

- Multi-armed bandits (clinical trials, ...)
- Other players' actions unknown (auctions, ...)

<u>►</u> ...

Possible fixes:

Two-time-scale approach: fast samples, slow updates [can be slow ©]

	0000000000

In many cases, even stochastic gradients are out of reach:

- Multi-armed bandits (clinical trials, ...)
- Other players' actions unknown (auctions, ...)

<u>►</u> ...

Possible fixes:

- Two-time-scale approach: fast samples, slow updates [can be slow ©]
- Multiple-point estimates [needs synchronization ©]

	0000000000

In many cases, even stochastic gradients are out of reach:

- Multi-armed bandits (clinical trials, ...)
- Other players' actions unknown (auctions, ...)

<u>۱۰۰</u>

Possible fixes:

- Two-time-scale approach: fast samples, slow updates [can be slow ©]
- Multiple-point estimates [needs synchronization ©]
- Simultaneous perturbation stochastic approximation [Spall, 1997]

 Bacgkround
 N-player games
 No-regret learning in games
 Local of classical data

 0000000
 00000000
 00000000
 00000000

Simultaneous perturbation stochastic approximation

Estimate u'(x) at target point $x \in \mathbb{R}$

$$u'(x) \approx \frac{u(x+\delta) - u(x-\delta)}{2\delta}$$

CNI

0000000	0000000	0000000	0000000000

Simultaneous perturbation stochastic approximation

Estimate u'(x) at target point $x \in \mathbb{R}$

$$u'(x) \approx \frac{u(x+\delta) - u(x-\delta)}{2\delta}$$

Pick $z = \pm 1$ with probability 1/2. Then:

$$\mathbb{E}[u(x+\delta z)z] = \frac{1}{2}u(x+\delta) - \frac{1}{2}u(x-\delta)$$

 \implies Estimate u'(x) up to $\mathcal{O}(\delta)$ by sampling u at $\hat{x} = x + \delta z$ and looking at $\frac{1}{\delta}u(\hat{x})z$

0000000	0000000	0000000	0000000000

Simultaneous perturbation stochastic approximation

Estimate u'(x) at target point $x \in \mathbb{R}$

$$u'(x) \approx \frac{u(x+\delta) - u(x-\delta)}{2\delta}$$

Pick $z = \pm 1$ with probability 1/2. Then:

$$\mathbb{E}[u(x+\delta z)z] = \frac{1}{2}u(x+\delta) - \frac{1}{2}u(x-\delta)$$

 \implies Estimate u'(x) up to $\mathcal{O}(\delta)$ by sampling u at $\hat{x} = x + \delta z$ and looking at $\frac{1}{\delta}u(\hat{x})z$

Algorithm 2 Single-point estimator of ∇u at X

Draw *z* uniformly from S^d
 Play X̂ = X + δz
 Get û = u(X̂)
 Set Ŷ = d//δ ûz

Bacgkround 0000000	<i>N</i> -player games	No-regret learning in games	
Learning	with bandit feedback		

Bacgkround 0000000	<i>N</i> -player games	No-regret learning in games 00000000	
onrs			

Learning with bandit feedback

Bacgkround 0000000	<i>N</i> -player games	No-regret learning in games 00000000	
Corrs Learning	with bandit feedback		

Bacgkround 0000000	<i>N</i> -player games	No-regret learning in games	
cnrs , .			

Bacgkround 0000000	<i>N</i> -player games	No-regret learning in games	
onrs			

Learning with bandit feedback

Bacgkround 0000000	<i>N</i> -player games	No-regret learning in games	
mrs			

Learning with bandit feedback

gkround	<i>N-</i> player games	No-regret learning in games	
Band	lit gradient descent		
Algo	rithm 3 Multi-agent gradient asce	ent with bandit feedback	
Requ	ire: step-size $\gamma_t > 0$, query radius	s $\delta_t > 0$, safety ball $\mathbb{B}_r(p)$ of	X
1: C	hoose $X \in \mathcal{X}$		# initialization
2: r	epeat at each stage $t = 1, 2, \ldots$		
3:	draw Z uniformly from \mathbb{S}^d	# pe	erturbation direction
4:	set $W \leftarrow Z - r^{-1}(X - p)$	# fe	easibility adjustment
5:	play $\hat{X} \leftarrow X + \delta_t W$		# choose action
6:	receive $\hat{u} \leftarrow u(\hat{X})$		#get payoff
7:	set $\hat{V} \leftarrow (d/\delta_t)\hat{u} \cdot Z$		# estimate gradient
8:	update $X \leftarrow \Pi(X + \gamma_t \hat{V})$		# update pivot
9: u	Intil end		

\
Bacgk 000		<i>N</i> -player games	No-regret learning in games	
CITS	Challenges			

• One-point estimates may be biased (no more than $\mathcal{O}(\delta)$ accuracy)

Bacgkround 0000000	<i>N</i> -player games	No-regret learning in games 0000000	
Challenge	s		

- One-point estimates may be biased (no more than $\mathcal{O}(\delta)$ accuracy)
- Can eliminate bias by taking decreasing $\delta_t o 0$

Bacgkround 0000000	<i>N-</i> player games	No-regret learning in games	
CITS Challenges			

- One-point estimates may be biased (no more than $\mathcal{O}(\delta)$ accuracy)
- Can eliminate bias by taking decreasing $\delta_t \rightarrow 0$ but variance explodes

 $\mathbb{E}[\|\hat{V}_t\|^2] = \mathcal{O}(1/\delta_t^2)$

Bacgkround 0000000	<i>N</i> -player games	No-regret learning in games	
Challenges			

- One-point estimates may be biased (no more than $\mathcal{O}(\delta)$ accuracy)
- Can eliminate bias by taking decreasing $\delta_t \rightarrow 0$ but variance explodes

$$\mathbb{E}[\|\hat{V}_t\|^2] = \mathcal{O}(1/\delta_t^2)$$

Stochastic approximation analysis requires bounded variance

- One-point estimates may be biased (no more than $\mathcal{O}(\delta)$ accuracy)
- Can eliminate bias by taking decreasing $\delta_t \rightarrow 0$ but variance explodes

$$\mathbb{E}[\|\hat{V}_t\|^2] = \mathcal{O}(1/\delta_t^2)$$

- Stochastic approximation analysis requires bounded variance
- Bias-variance dilemma: accuracy vs. stability?

Bacgkr 0000	ound <i>N</i> -player games	No-regret learning in games	
CITS	Convergence analysis		
	Must balance step-size γ_t against c	query radius δ_t :	
	$\blacktriangleright \lim_{t\to\infty} \gamma_t = \lim_{t\to\infty} \delta_t = 0$	# vanish	ning noise and bias
	• $\sum_{t=1}^{\infty} \gamma_t = \infty$	# the pr	ocess doesn't stop
	$\sum_{t=1}^{\infty} \gamma_t^2 / \delta_t^2 < \infty$		# variance control

 $\lim_{t\to\infty}\gamma_t\delta_t=0$

bias control

Bacgkro 000C	ound <i>N</i> -player games	No-regret learning in games	
CITS	Convergence analysis		
	Must balance step-size y_t against q	uery radius δ_t :	
	$\blacktriangleright \lim_{t\to\infty} \gamma_t = \lim_{t\to\infty} \delta_t = 0$	# vanisl	ning noise and bias
	• $\sum_{t=1}^{\infty} \gamma_t = \infty$	# the p	rocess doesn't stop
	$\sum_{t=1}^{\infty} \gamma_t^2 / \delta_t^2 < \infty$		# variance control
	$\lim_{t\to\infty}\gamma_t\delta_t=0$		# bias control

Theorem (Bravo, Leslie & M, NIPS 2018)

- 1. Under strict monotonicity, X_t converges to Nash equilibrium with probability 1.
- 2. Under strong monotonicity ($H(x) \prec -\beta I$), $\gamma_t \propto 1/t$, $\delta_t \propto 1/t^{1/3}$, we have:

$$\mathbb{E}[\|X_t - x^*\|^2] = \mathcal{O}(1/t^{1/3}).$$

Conclusions and perspectives

Conclusions

- No-regret learning does not guarantee stability by itself X
- No-regret learning plus suitable monotonicity does
- Convergence to equilibrium does not require gradient feedback

Conclusions and perspectives

Conclusions

- No-regret learning does not guarantee stability by itself X
- No-regret learning plus suitable monotonicity does
- Convergence to equilibrium does not require gradient feedback

Open questions

- Faster rates?
- Delayed payoff observations?
- Beyond monotonicity?
- ???

NetEcon 2019

The 14th Workshop on the Economics of Networks, Systems and Computation Phoenix, Arizona, 28th June 2019

In conjunction with ACM EC 2019 & SIGMETRICS 2019

Keynote speakers: Itai Ashlagi *** David Parkes *** Nicolas Stier

Topics: Networks & ... learning, resource pricing, market design, auctions

https://netecon19.inria.fr