NO-REGRET LEARNING IN GAMES

Panayotis Mertikopoulos¹

¹French National Center for Scientific Research (CNRS)
Laboratoire d’Informatique de Grenoble (LIG)

NPCG ’19 - Paris, April 16, 2019
Outline

Background

N-player games

No-regret learning in games

Learning with limited feedback
The Kelly auction

Proportionally fair allocation of resources to different clients [Kelly, 1998]:

Client 1

Client 2

Client 3

Resources
The Kelly auction

Proportionally fair allocation of resources to different clients [Kelly, 1998]:

Client 1

Client 2

Client 3

Resources

bid x_1

bid x_2

bid x_3
The Kelly auction

Proportionally fair allocation of resources to different clients [Kelly, 1998]:

\[
\text{Client 1:} \quad \text{bid } x_1, \quad \text{get } \frac{x_1}{x_1 + x_2 + x_3} \\
\text{Client 2:} \quad \text{bid } x_2, \quad \text{get } \frac{x_2}{x_1 + x_2 + x_3} \\
\text{Client 3:} \quad \text{bid } x_3, \quad \text{get } \frac{x_3}{x_1 + x_2 + x_3}
\]
Proportionally fair allocation of resources to different clients [Kelly, 1998]:

Resources could be processor cores, bandwidth
The Kelly auction

Proportionally fair allocation of resources to different clients [Kelly, 1998]:

Resources could be processor cores, bandwidth, or even anonymous web traffic.
Online decision processes

Agents called to take repeated decisions with minimal information:

\[
\text{repeat} \\
\text{At each epoch } t = 1, 2, \ldots \\
\text{Choose action } X_t \\
\text{Get payoff } u_t(X_t) \\
\text{until end}
\]
Online decision processes

Agents called to take repeated decisions with minimal information:

```
repeat
At each epoch \( t = 1, 2, \ldots \)
  Choose **action** \( X_t \)
  Get **payoff** \( u_t(X_t) \)
until end
```

Main question: *How to choose a “good” action at each epoch?*

- **Uncertain world:** no beliefs, feedback, knowledge of future, etc.
- **Obliviousness:** are payoffs affected by the agent’s previous actions?
- **Optimality:** what is “optimal” in this setting?
Regret minimization

Performance often quantified by the agent’s regret

$$u_t(x) - u_t(X_t)$$
Regret minimization

Performance often quantified by the agent’s regret

\[
\sum_{t=1}^{T} [u_t(x) - u_t(X_t)]
\]
Regret minimization

Performance often quantified by the agent’s regret

\[
\max_{x \in X} \sum_{t=1}^{T} [u_t(x) - u_t(X_t)]
\]
Regret minimization

Performance often quantified by the agent’s regret

\[
\text{Reg}(T) = \max_{x \in X} \sum_{t=1}^{T} [u_t(x) - u_t(X_t)]
\]
Regret minimization

Performance often quantified by the agent’s regret

\[
\text{Reg}(T) = \max_{x \in X} \sum_{t=1}^{T} [u_t(x) - u_t(X_t)]
\]

No regret: \(\text{Reg}(T) = o(T) \)

“The sequence of chosen actions is as good as the best fixed action in hindsight.”
Regret minimization

Performance often quantified by the agent’s **regret**

\[
\text{Reg}(T) = \max_{x \in X} \sum_{t=1}^{T} [u_t(x) - u_t(X_t)]
\]

No regret: \(\text{Reg}(T) = o(T)\)

“The sequence of chosen actions is as good as the best fixed action in hindsight.”

Prolific literature:

- Economics [Hannan, Blackwell, Hart & Mas-Colell,…]
- Machine learning & computer science [Littlestone & Warmuth, Vovk,…]
- Online learning & optimization [Cesa-Bianchi & Lugosi, Zinkevich,…]
Multi-agent learning

- Multiple agents, individual objectives

- Payoffs determined by actions of all agents

- Agents receive payoffs, adjust actions, and the process repeats
Multi-agent learning

- Multiple agents, individual objectives
 Example: place a bid in a repeated auction

- Payoffs determined by actions of all agents
 Example: outcome of auction revealed

- Agents receive payoffs, adjust actions, and the process repeats
 Example: change bid if unsatisfied
The golden rule:

No-regret learning leads to equilibrium
No-regret and equilibrium

The golden rule:

No-regret learning leads to equilibrium

*If it’s ok to:
No-regret and equilibrium

The golden rule:

No-regret learning leads to equilibrium

* If it’s ok to:

✗ Assign positive weight only to strictly dominated strategies

[Viossat & Zapechelnyuk, 2013]
No-regret and equilibrium

The golden rule:

No-regret learning leads to equilibrium*

* If it’s ok to:

✗ Assign positive weight only to strictly dominated strategies
 [Viossat & Zapechelnyuk, 2013]

✗ Be arbitrarily far from equilibrium infinitely often
 [too many to list]
No-regret and equilibrium

The golden rule:

No-regret learning leads to equilibrium*

* If it’s ok to:

✗ Assign positive weight only to strictly dominated strategies
 [Viossat & Zapechelnyuk, 2013]

✗ Be arbitrarily far from equilibrium infinitely often
 [too many to list]

✗ …
No-regret and equilibrium

When does no-regret learning converge to Nash equilibrium?
Outline

Background

N-player games

No-regret learning in games

Learning with limited feedback
N-player games

The game

- Finite set of players $i \in \mathcal{N} = \{1, \ldots, N\}$
- Each player selects an action x_i from a compact convex set \mathcal{X}_i
- Reward of player i determined by payoff function $u_i : \mathcal{X} \equiv \prod_i \mathcal{X}_i \rightarrow \mathbb{R}$

Examples

- Finite games (mixed extensions)
- Power control/allocation problems
- Traffic routing
- Generative adversarial networks (two-player zero-sum games)
- Divisible good auctions (Kelly, …)
- Cournot oligopolies
- …
Kelly auctions

The Kelly auction as an N-player game:

- **Players**: $i = 1, \ldots, N$ [bidders]
- **Resources** $S = \{1, \ldots, S\}$ [websites]
- **Action spaces**: $X_i = \{x_i \in \mathbb{R}_+^S : \sum_s x_{is} \leq b_i\}$ [budget of i-th bidder]
- **Resource allocation ratio**:
 $$\rho_{is}(x) = \frac{q_s x_{is}}{c_{is} + \sum_{j \in N} x_{js}}$$ [entry barrier]
- **Payoff functions**:
 $$u_i(x) = \sum_{s \in S} [g_i \rho_{is}(x) - x_i]$$ [utility from resources minus cost]
Nash equilibrium

Action profile $x^* = (x_1^*, \ldots, x_t^*) \in \mathcal{X}$ that is unilaterally stable

$$ u_i(x_i^*; x_{-i}^*) \geq u_i(x_i; x_{-i}^*) \quad \text{for every player } i \in \mathcal{N} \text{ and every deviation } x_i \in \mathcal{X}_i $$
Nash equilibrium

Action profile $x^* = (x_1^*, \ldots, x_t^*) \in \mathcal{X}$ that is unilaterally stable

$$u_i(x_i^*; x_i^*) \geq u_i(x_i; x_i^*) \quad \text{for every player } i \in \mathcal{N} \text{ and every deviation } x_i \in \mathcal{X}_i$$

Individual payoff gradients

$$V_i(x) = \nabla_{x_i} u_i(x_i; x_{-i})$$

Interpretation: direction of individually steepest payoff ascent
Nash equilibrium

Action profile \(x^* = (x_1^*, \ldots, x_t^*) \in \mathcal{X} \) that is unilaterally stable

\[
 u_i(x_i^*; x_{-i}^*) \geq u_i(x_i; x_{-i}^*) \quad \text{for every player } i \in \mathcal{N} \text{ and every deviation } x_i \in \mathcal{X}_i
\]

Individual payoff gradients

\[
 V_i(x) = \nabla_{x_i} u_i(x_i; x_{-i})
\]

Interpretation: direction of individually steepest payoff ascent

Variational characterization

If \(x^* \) is a Nash equilibrium, then

\[
 \langle V_i(x^*), x_i - x_i^* \rangle \leq 0 \quad \text{for all } i \in \mathcal{N}, x_i \in \mathcal{X}_i
\]

Intuition: \(u_i(x_i; x_{-i}^*) \) decreasing along all rays emanating from \(x_i^* \)
At Nash equilibrium, individual payoff gradients are outward-pointing.
Monotonicity

A key assumption for games is **monotonicity**:

\[
\langle V(x') - V(x), x' - x \rangle \leq 0 \quad \text{for all } x \in \mathcal{X}
\]

\text{(MC)}
Monotonicity

A key assumption for games is monotonicity:

\[\langle V(x') - V(x), x' - x \rangle \leq 0 \quad \text{for all } x \in \mathcal{X} \quad \text{(MC)} \]

Equivalently: \(H(x) \preceq 0 \) where \(H \) is the game’s Hessian matrix:

\[
H_{ij}(x) = \frac{1}{2} \nabla x_i \nabla x_j u_i(x) + \frac{1}{2} (\nabla x_i \nabla x_j u_j(x))^\top
\]

Interpretation: concavity for games
Monotonicity

A key assumption for games is monotonicity:

\[
\langle V(x') - V(x), x' - x \rangle \leq 0 \quad \text{for all } x \in \mathcal{X}
\]

(MC)

Equivalently: \(H(x) \preceq 0 \) where \(H \) is the game’s Hessian matrix:

\[
H_{ij}(x) = \frac{1}{2} \nabla_{x_j} \nabla_{x_j} u_i(x) + \frac{1}{2} (\nabla_{x_i} \nabla_{x_j} u_j(x))^\top
\]

Interpretation: concavity for games

Examples: Kelly auctions, Cournot oligopolies, routing, power control, ...

Close relatives:

- Stable games [Hofbauer & Sandholm, 2009]
- Contractive games [Sandholm, 2015];
- Dissipative [Sorin & Wan, 2016]
Monotonicity

Theorem (Rosen, 1965)

If a game is strictly monotone, it admits a unique Nash equilibrium.

[+ extensions to {...}-monotone games, generalized equilibrium problems,...]
Outline

Background

N-player games

No-regret learning in games

Learning with limited feedback
How to achieve no regret?

Take a gradient step and project:

\[X_{t+1} = \Pi(X_t + \gamma_t \nabla u_t(X_t)) \]

(OGD)

[Zinkevich, ICML 2003]
How to achieve no regret?

Take a gradient step and project:

\[X_{t+1} = \Pi(X_t + \gamma_t \nabla u_t(X_t)) \]

(OGD)

[Zipkevich, ICML 2003]
How to achieve no regret?

Take a gradient step and project:

\[X_{t+1} = \Pi(X_t + \gamma_t \nabla u_t(X_t)) \]

[Zinkevich, ICML 2003]

\[(\text{OGD}) \]
How to achieve no regret?

Take a gradient step and project:

$$X_{t+1} = \Pi(X_t + \gamma_t \nabla u_t(X_t))$$

[Zinkevich, ICML 2003]
How to achieve no regret?

Take a gradient step and project:

\[X_{t+1} = \Pi(X_t + \gamma_t \nabla u_t(X_t)) \]

[OGD]

\[\Pi \]

\[X_1 \]

\[X_2 \]

\[X_3 \]

\[\gamma_1 \nabla u_1(X_1) \]

\[\gamma_2 \nabla u_2(X_2) \]

[Zinkevich, ICML 2003]
How to achieve no regret?

Take a gradient step and project:

\[X_{t+1} = \Pi(X_t + \gamma_t \nabla u_t(X_t)) \]

\[\text{(OGD)} \]

\[\text{Reg}(T) = O(T^{1/2}) \text{ for suitable } \gamma_t; \text{ optimal in } T \]

[Abernethy et al, 2008]
How to achieve no regret?

Take a gradient step and project:

\[
X_{t+1} = \Pi(X_t + \gamma_t \nabla u_t(X_t))
\]

(OGD)

\[\text{Reg}(T) = O(T^{1/2}) \text{ for suitable } \gamma_t; \text{ optimal in } T \] [Abernethy et al, 2008]

...but what about convergence?
A dynamical systems viewpoint

Vector flow of V (simplest case: no constraints, smooth, etc.):

$$\frac{dX_i}{dt} = -V_i(X(t)) \quad \text{(GD)}$$

Energy function:

$$E(x) = \frac{1}{2} \| x - x^* \|^2$$

Lyapunov property:

$$\frac{dE}{dt} = -\langle V(X(t)), X(t) - x^* \rangle \leq 0$$

Distance to solutions is (weakly) decreasing along trajectories of (GD)
Cycles

Roadblock: the energy might be a **constant of motion** [Hofbauer et al, 2009]

Figure: Hamiltonian flow of $f(x_1, x_2) = x_1 x_2$.
Poincaré recurrence

Cycles are an example of recurrence:

Definition (Poincaré, 1890’s)

A dynamical system is *Poincaré recurrent* if almost all solution trajectories return arbitrarily close to their starting point infinitely many times.
Poincaré recurrence

Cycles are an example of **recurrence**:

Definition (Poincaré, 1890’s)

A dynamical system is **Poincaré recurrent** if almost all solution trajectories return **arbitrarily close** to their starting point **infinitely many times**.

Theorem (M, Papadimitriou, Piliouras, SODA 2018; bare-bones version)

(GD) is recurrent in all bilinear saddle-point problems with an interior solution.
OGD in games

OGD as a forward (Euler) scheme:

\[X^+ = X - \gamma V(X) \]
OGD in games

OGD as a forward (Euler) scheme:

\[X^+ = X - \gamma V(X) \]

Energy no longer a constant:

\[
\frac{1}{2} \| X^+ - x^* \|^2 = \frac{1}{2} \| X - x^* \|^2 - \gamma \langle V(X), X - x^* \rangle + \frac{1}{2} \gamma^2 \| V(X) \|^2 \]

from (GD) discretization error

\ldots \text{even worse}
OGD in games

OGD as a forward (Euler) scheme:

\[X^+ = X - \gamma V(X) \]

Energy no longer a constant:

\[
\frac{1}{2} \| X^+ - x^* \|^2 = \frac{1}{2} \| X - x^* \|^2 - \gamma \langle V(X), X - x^* \rangle + \frac{1}{2} \gamma^2 \| V(X) \|^2
\]

from (GD)
discretization error

...even worse
OGD in games

OGD as a forward (Euler) scheme:

\[X_{t+1} = X_t - \gamma V(X_t) \]
Time averages: a very different story

No-regret captures behavior of time-averaged process:

\[
\bar{X}_t = \frac{1}{t} \sum_{s=1}^{t} X_s
\]
Convergence to equilibrium

Behavior different under strict monotonicity:

\[
\frac{1}{2} \| X_{t+1} - x^* \|^2 = \frac{1}{2} \| X_t - x^* \|^2 - y_t \langle V(X_t), X_t - x^* \rangle + \frac{1}{2} y_t^2 \| V(X_t) \|^2
\]

< 0 if \(X_t \) not Nash

Can the drift overcome the discretization error?
Convergence to equilibrium

Behavior different under strict monotonicity:

\[
\frac{1}{2} \| X_{t+1} - x^* \|^2 = \frac{1}{2} \| X_t - x^* \|^2 - \gamma_t \langle V(X_t), X_t - x^* \rangle + \frac{1}{2} \gamma_t^2 \| V(X_t) \|^2 < 0 \text{ if } X_t \text{ not Nash}
\]

Can the drift overcome the discretization error?

Theorem (M & Zhou, MathProg 2019)

- **Assume:** game strictly monotone, \(\sum_t \gamma_t = \infty, \sum_t \gamma_t^2 < \infty \)
- **Then:** \(X_t \) converges to a Nash equilibrium from any initial condition
Convergence to equilibrium

Behavior different under **strict** monotonicity:

\[
\frac{1}{2} \|X_{t+1} - x^*\|^2 = \frac{1}{2} \|X_t - x^*\|^2 - \gamma_t \langle V(X_t), X_t - x^* \rangle + \frac{1}{2} \gamma_t^2 \|V(X_t)\|^2
\]

< 0 if X_t not Nash

discretization error

Can the drift overcome the discretization error?

Theorem (M & Zhou, MathProg 2019)

- **Assume:** game strictly monotone, $\sum_t \gamma_t = \infty$, $\sum_t \gamma_t^2 < \infty$
- **Then:** X_t converges to a Nash equilibrium from any initial condition

In strictly monotone games, no-regret \leadsto Nash equilibrium
Outline

Background

N-player games

No-regret learning in games

Learning with limited feedback
Feedback

(OGD) requires gradient information, which may be difficult to come by:

▸ Other players’ actions unknown
▸ Measurement errors
▸ Stochastic utilities (realized vs. expected gradients)
▸ ...

Imperfect gradient feedback:

\[\hat{V}_t = V(x_t) + U_t \]

with the following hypotheses:

[H1] Zero-mean error: \(\mathbb{E}[U_t | F_{t-1}] = 0 \) \[\implies \mathbb{E}[\hat{V}_t | F_{t-1}] = V(x_t) \]

[H2] Finite mean squared error: \(\mathbb{E}[\|U_t\|^2_x | F_{t-1}] \leq \sigma^2 \) \[\implies \mathbb{E}[\|\hat{V}_t\|^2_x | F_{t-1}] \leq V^2 \]
Learning with imperfect gradients

Algorithm 1 Stochastic gradient descent

Require: step-size sequence $\gamma_t > 0$

1: choose $X \in \mathcal{X}$ \hfill \# initialization
2: for $t = 1, 2, \ldots$ do
3: oracle query at state X returns V \hfill \# gradient feedback
4: set $X \leftarrow \Pi(X + \gamma_t V)$ \hfill \# new state
5: end for
6: return X
Learning with imperfect gradients

Algorithm 1 Stochastic gradient descent

Require: step-size sequence $\gamma_t > 0$

1: choose $X \in \mathcal{X}$ \hspace{1cm} \# initialization
2: \textbf{for} $t = 1, 2, \ldots$ \textbf{do} \hspace{1cm} \# gradient feedback
3: \quad oracle query at state X returns V \hspace{1cm} \# new state
4: \quad set $X \leftarrow \Pi(X + \gamma_t V)$
5: \textbf{end for}
6: \textbf{return} X

Guarantees:

- $\mathbb{E}[\text{Reg}(T)] = \mathcal{O}(\sqrt{T})$ \hspace{1cm} [folk]
- Strict monotonicity $\implies X_t$ converges to Nash (a.s.) \hspace{1cm} [M & Zhou, 2019]
No gradient feedback whatsoever

In many cases, even stochastic gradients are out of reach:

- Multi-armed bandits (clinical trials, …)
- Other players’ actions unknown (auctions, …)
- …
No gradient feedback whatsoever

In many cases, even stochastic gradients are out of reach:

- Multi-armed bandits (clinical trials, …)
- Other players’ actions unknown (auctions, …)
- …

Possible fixes:

- Two-time-scale approach: fast samples, slow updates
 [can be slow 😊]
Background

N-player games

No-regret learning in games

Learning with limited feedback

No gradient feedback whatsoever

In many cases, even stochastic gradients are out of reach:

- Multi-armed bandits (clinical trials, …)
- Other players’ actions unknown (auctions, …)
- ...

Possible fixes:

- Two-time-scale approach: fast samples, slow updates [can be slow 😞]
- Multiple-point estimates [needs synchronization 😞]
No gradient feedback whatsoever

In many cases, even stochastic gradients are out of reach:

- Multi-armed bandits (clinical trials, …)
- Other players’ actions unknown (auctions, …)
- …

Possible fixes:

- Two-time-scale approach: fast samples, slow updates [can be slow 😞]
- Multiple-point estimates [needs synchronization 😞]
- Simultaneous perturbation stochastic approximation [Spall, 1997]
Simultaneous perturbation stochastic approximation

Estimate $u'(x)$ at target point $x \in \mathbb{R}$

$$u'(x) \approx \frac{u(x + \delta) - u(x - \delta)}{2\delta}$$
Estimate $u'(x)$ at target point $x \in \mathbb{R}$

$$u'(x) \approx \frac{u(x + \delta) - u(x - \delta)}{2\delta}$$

Pick $z = \pm 1$ with probability $1/2$. Then:

$$\mathbb{E}[u(x + \delta z) z] = \frac{1}{2} u(x + \delta) - \frac{1}{2} u(x - \delta)$$

\implies Estimate $u'(x)$ up to $O(\delta)$ by sampling u at $\hat{x} = x + \delta z$ and looking at $\frac{1}{\delta} u(\hat{x}) z$
Simultaneous perturbation stochastic approximation

Estimate $u'(x)$ at target point $x \in \mathbb{R}$

$$u'(x) \approx \frac{u(x + \delta) - u(x - \delta)}{2\delta}$$

Pick $z = \pm 1$ with probability $1/2$. Then:

$$\mathbb{E}[u(x + \delta z) z] = \frac{1}{2} u(x + \delta) - \frac{1}{2} u(x - \delta)$$

\implies Estimate $u'(x)$ up to $O(\delta)$ by sampling u at $\hat{x} = x + \delta z$ and looking at $\frac{1}{\delta} u(\hat{x}) z$

Algorithm 2 Single-point estimator of ∇u at X

1. Draw z uniformly from \mathbb{S}^d
2. Play $\hat{X} = X + \delta z$
3. Get $\hat{u} = u(\hat{X})$
4. Set $\hat{V} = \frac{d}{\delta} \hat{u} z$
Learning with bandit feedback
Learning with bandit feedback
Learning with bandit feedback

\[\gamma \left(\frac{d}{\delta} \right) \hat{u}_1 z_1 \]
Learning with bandit feedback

\[\gamma (d/\delta) \hat{u}_1 z_1 \]
Learning with bandit feedback
Learning with bandit feedback
Bandit gradient descent

Algorithm 3 Multi-agent gradient ascent with bandit feedback

Require: step-size $\gamma_t > 0$, query radius $\delta_t > 0$, safety ball $B_r(p) \subseteq \mathcal{X}$

1: choose $X \in \mathcal{X}$ \hspace{1cm} # initialization
2: repeat at each stage $t = 1, 2, \ldots$
3: draw Z uniformly from \mathbb{S}^d \hspace{1cm} # perturbation direction
4: set $W \leftarrow Z - r^{-1}(X - p)$ \hspace{1cm} # feasibility adjustment
5: play $\hat{X} \leftarrow X + \delta_t W$ \hspace{1cm} # choose action
6: receive $\hat{u} \leftarrow u(\hat{X})$ \hspace{1cm} # get payoff
7: set $\hat{V} \leftarrow (d/\delta_t)\hat{u} \cdot Z$ \hspace{1cm} # estimate gradient
8: update $X \leftarrow \Pi(X + \gamma_t \hat{V})$ \hspace{1cm} # update pivot
9: until end
Challenges

Key difficulty:

- One-point estimates may be biased (no more than \(O(\delta) \) accuracy)
Challenges

Key difficulty:

- One-point estimates may be biased (no more than $\mathcal{O}(\delta)$ accuracy)
- Can eliminate bias by taking decreasing $\delta_t \rightarrow 0$
Challenges

Key difficulty:

- One-point estimates may be biased (no more than $O(\delta)$ accuracy)
- Can eliminate bias by taking decreasing $\delta_t \to 0$ but variance explodes

$$\mathbb{E}[\|\hat{V}_t\|^2] = O(1/\delta_t^2)$$
Key difficulty:

- One-point estimates may be biased (no more than $O(\delta)$ accuracy)
- Can eliminate bias by taking decreasing $\delta_t \to 0$ but variance explodes

$$\mathbb{E}[\|\hat{V}_t\|^2] = O(1/\delta_t^2)$$

- Stochastic approximation analysis requires bounded variance
Key difficulty:

- One-point estimates may be biased (no more than $O(\delta)$ accuracy)
- Can eliminate bias by taking decreasing $\delta_t \to 0$ but variance explodes

\[
\mathbb{E}[\|\hat{V}_t\|^2] = O(1/\delta_t^2)
\]

- Stochastic approximation analysis requires bounded variance
- Bias-variance dilemma: accuracy vs. stability?
Convergence analysis

Must balance step-size γ_t against query radius δ_t:

- $\lim_{t \to \infty} \gamma_t = \lim_{t \to \infty} \delta_t = 0$ # vanishing noise and bias
- $\sum_{t=1}^{\infty} \gamma_t = \infty$ # the process doesn’t stop
- $\sum_{t=1}^{\infty} \gamma_t^2 / \delta_t^2 < \infty$ # variance control
- $\lim_{t \to \infty} \gamma_t \delta_t = 0$ # bias control
Convergence analysis

Must balance step-size γ_t against query radius δ_t:

- $\lim_{t \to \infty} \gamma_t = \lim_{t \to \infty} \delta_t = 0$
 # vanishing noise and bias
- $\sum_{t=1}^{\infty} \gamma_t = \infty$
 # the process doesn’t stop
- $\sum_{t=1}^{\infty} \gamma_t^2 / \delta_t^2 < \infty$
 # variance control
- $\lim_{t \to \infty} \gamma_t \delta_t = 0$
 # bias control

Theorem (Bravo, Leslie & M, NIPS 2018)

1. **Under strict monotonicity**, X_t converges to Nash equilibrium with probability 1.

2. **Under strong monotonicity** $(H(x) < -\beta I)$, $\gamma_t \propto 1/t$, $\delta_t \propto 1/t^{1/3}$, we have:

$$\mathbb{E}[\|X_t - x^*\|^2] = O(1/t^{1/3}).$$
Convergence rate

Speed of convergence in a repeated Kelly auction

![Graph showing convergence rate](image-url)
Conclusions and perspectives

Conclusions

- No-regret learning does not guarantee stability by itself ❌
- No-regret learning plus suitable monotonicity does ✓
- Convergence to equilibrium does not require gradient feedback ✓
Conclusions and perspectives

Conclusions

- No-regret learning does not guarantee stability by itself ✗
- No-regret learning plus suitable monotonicity does ✓
- Convergence to equilibrium does not require gradient feedback ✓

Open questions

- Faster rates?
- Delayed payoff observations?
- Beyond monotonicity?
- ???
NetEcon 2019

The 14th Workshop on the Economics of Networks, Systems and Computation
Phoenix, Arizona, 28th June 2019

In conjunction with ACM EC 2019 & SIGMETRICS 2019

Keynote speakers: Itai Ashlagi *** David Parkes *** Nicolas Stier

Topics: Networks & ... learning, resource pricing, market design, auctions