Bilevel Programming and Price Optimization

Martine Labbé

Computer Science Department Université Libre de Bruxelles

INOCS Team, INRIA Lille

ULB

Bilevel Program

$$
\begin{array}{rl}
\max _{x, y} & f(x, y) \\
\text { s.t. } & (x, y) \in X \\
& y \in S(x) \\
\text { where } & S(x)=\underset{y}{\operatorname{argmax}} g(x, y) \\
& \text { s.t. }(x, y) \in Y
\end{array}
$$

ULB

Adequate framework for Stackelberg game

- Leader: 1st level,
- Follower: 2nd level,
- Leader takes follower's optimal reaction into account.

Heinrich von Stackelberg (1905-1946)

First paper on bilevel optimization

Bracken \& McGill (OR, 1973): First bilevel model, structural properties, military application.

Mathematical Programs with Optimization Problems
in the Constraints

Jerome Bracken and James T. McGill

Institute for Defense Analyses, Arlington, Virginia
(Received October 5, 1971)
This paper considers a class of optimization problems characterized by constraints that themselves contain optimization problems. The problems in the constraints can be linear programs, nonlinear programs, or two-sided optimization problems, including certain types of games. The paper presents theory dealing primarily with properties of the relevant functions that result in convex programming problems, and discusses interpretations of this theory. It gives an application with linear programs in the constraints, and discusses computational methods for solving the problems.

ULB

Adequate framework for Price Setting Problem

$$
\begin{array}{rl}
\max _{T \in \Theta, x, y} & F(T, x, y) \\
\text { s.t. } & \min _{x, y} f(T, x, y) \\
& \text { s.t. }(x, y) \in \Pi
\end{array}
$$

ULB

Applications

Mobile Internet. Package Plans.

Price Setting Problem with linear constraints

$\max _{T, x, y}$	$T x$		
s.t.	$T C \geq f$		
$\min _{x, y}$	$(c+T) x+d y$		
s.t.	$A x+B y \geq b$	\quad	
:---			

ULB

Example: 2 variables in second level

ULB

The first level revenue

Price setting problem: single level reformulation

$\max _{T, x, y}$	$T x$
s.t.	$T C \geq f$
$\min _{x, y}$	$(c+T) x+d y$
s.t.	$A x+B y \geq b$

$$
\begin{array}{cl}
\hline \max _{T, x, y} & T x \\
\text { s.t. } & T C \geq f \\
& A x+B y \geq b \\
& \lambda A=c+T \\
& \lambda B=d \\
& (c+T) x+d y=\lambda b
\end{array}
$$

ULB

Network pricing problem (Labbé et al. 1998, Labbé \& Violin, 2013)

- network with toll arcs $\left(A_{1}\right)$ and non toll arcs $\left(A_{2}\right)$
- Costs c_{a} on arcs
- Commodities $\left(o^{k}, d^{k}, n^{k}\right)$
- Routing on cheapest (cost + toll $)$ path
- Maximize total revenue

ULB

Example

- UB on $\left(T_{1}+T_{2}\right)=\operatorname{SPL}(T=\infty)-\operatorname{SPL}(T=0)=22-6=16$
- $T_{2,3}=5, T_{4,5}=10$

ULB

Example with negative toll arc

Network pricing problem (Labbé et al., 1998, Roch at al., 2005)

- Strongly NP-hard even for only one commodity.
- Polynomial for
- one commodity if lower level path is known
- one commodity if toll arcs with positive flows are known
- one single toll arc.
- Polynomial algorithm with worst-case guarantee of $(\log |A 1|) / 2+1$

ULB

One toll arc

- For each k, compute $U B(k)$ on $\operatorname{profit}(k)$ if k uses toll arc
- $U B(1) \geq U B(2) \geq \ldots \geq U B(K)$
- $T_{a}=U B\left(i^{*}\right), i^{*} \in \underset{i}{\operatorname{argmax}}\left\{U B(i) \sum_{k \leq i} n^{k}\right\}$

ULB

Network pricing problem

$$
\begin{array}{ll}
\max _{T} & \sum_{a \in A_{1}} T_{a} \sum_{k \in K} n^{k} x_{a}^{k} \\
\min _{x, y} & \sum_{k \in K}\left(\sum_{a \in A_{1}}\left(c_{a}+T_{a}\right) x_{a}^{k}+\sum_{a \in A_{2}} c_{a} y_{a}^{k}\right) \\
\text { s.t. } & \sum_{a \in i^{+}}\left(x_{a}^{k}+y_{a}^{k}\right)-\sum_{a \in i^{-}}\left(x_{a}^{k}+y_{a}^{k}\right)=b_{i}^{k} \quad \forall k, i \\
& x_{a}^{k}, y_{a}^{k} \geq 0, \quad \forall k, a
\end{array}
$$

ULB

NPP: single level reformulation

$\max _{T, x, y, \lambda} \sum_{k \in K} n^{k} \sum_{a \in A_{k}} T_{a} x_{a}^{k}$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{a \in i^{+}}\left(x_{a}^{k}+y_{a}^{k}\right)-\sum_{a \in i^{-}}\left(x_{a}^{k}+y_{a}^{k}\right)=b_{i}^{k} \quad \forall k, i \\
& \lambda_{i}^{k}-\lambda_{j}^{k} \leq c_{a}+T_{a} \quad \forall k, a \in A_{1}, i, j \\
& \lambda_{i}^{k}-\lambda_{j}^{k} \leq c_{a} \quad \forall k, a \in A_{2}, i, j \\
& \sum_{a \in A_{1}}\left(c_{a}+T_{a}\right) x_{a}^{k}+\sum_{a \in A_{2}} c_{a} y_{a}^{k}=\lambda_{o^{k}}^{k}-\lambda_{d^{k}}^{k} \\
& x_{a}^{k}, y_{a}^{k} \geq 0 \quad \forall k, a \\
& T_{a} \geq 0 \quad \forall a \in A_{1}
\end{array}
$$

ULB

NPP: single level reformulation

$$
\begin{aligned}
\max _{T, x, y, \lambda} & \sum_{k \in K} n^{k} \sum_{a \in A_{k}} T_{a} x_{a}^{k} \\
\text { s.t. } & \sum_{a \in i^{+}}\left(x_{a}^{k}+y_{a}^{k}\right)-\sum_{a \in i^{-}}\left(x_{a}^{k}+y_{a}^{k}\right)=b_{i}^{k} \quad \forall k, i \\
& \lambda_{i}^{k}-\lambda_{j}^{k} \leq c_{a}+T_{a} \quad \forall k, a \in A_{1}, i, j \\
& \lambda_{i}^{k}-\lambda_{j}^{k} \leq c_{a} \quad \forall k, a \in A_{2}, i, j \\
& \sum_{a \in A_{1}}\left(c_{a}+T_{a}\right) x_{a}^{k}+\sum_{a \in A_{2}} c_{a} y_{a}^{k}=\lambda_{o^{k}}^{k}-\lambda_{d^{k}}^{k} \\
& x_{a}^{k}, y_{a}^{k} \geq 0 \quad \forall k, a \\
& T_{a} \geq 0 \quad \forall a \in A_{1}
\end{aligned}
$$

ULB

NPP: obtaining a MIP

ULB

Particular case: highway pricing

20

Particular case: highway
 pricing

- Polynomial number of paths for commodities
- Tolls non additive: one toll for each path

ULB

Particular case: highway pricing

ULB

Possible additional constraints

$$
T_{a} \leq T_{b}+T_{c}
$$

$$
T_{a} \geq T_{b}
$$

ULB

An equivalent problem: Product pricing

Consumers

- $p_{i}=$ price of product i
- $r(i, j)=$ reservation price of consumer group C_{j} for product i

ULB

Product pricing (PPP)

$$
r(i, k)=c_{o, d}^{k}-c_{i}^{k}
$$

PPP= bilevel formulation

$$
\begin{aligned}
\max _{T \geq 0} & \sum_{k \in K} n^{k} \sum_{a \in A^{k}} T_{a} x_{a}^{k} \\
\text { s.t. }(x, y) \in \underset{x, y}{\operatorname{argmin}} & \sum_{k \in K}\left(\sum_{a \in A^{k}}\left(c_{a}+T_{a}\right) x_{a}^{k}+c_{o d}^{k} y^{k}\right) \\
\text { s.t. } & \sum_{a \in A^{k}} x_{a}^{k}+y^{k}=1, \forall k \in K \\
& x_{a}^{k}, y^{k} \in\{0,1\}
\end{aligned}
$$

ULB

PPP: single level formulation

$$
\begin{array}{ll}
\max _{T \geq 0} & \sum_{k \in K} n^{k} \sum_{a \in A^{k}} T_{a} x_{a}^{k} \\
\text { s.t. } & \sum_{a \in A^{k}}\left(c_{a}^{k}+T_{a}\right) x_{a}^{k}+c_{o d}^{k} y^{k} \leq T_{b}+c_{b}^{k} \\
& \sum_{a \in A^{k}}\left(c_{a}^{k}+T_{a}\right) x_{a}^{k}+c_{o d}^{k} y^{k} \leq c_{o d}^{k}, \quad \forall k \\
& \sum_{a \in A^{k}} x_{a}^{k}+y^{k}=1 \quad \forall k \\
& x_{a}^{k}, y^{k} \in\{0,1\}
\end{array}
$$

ULB

PPP: MIP formulation

 (Heilporn et al., 2010, 2011)$$
\begin{array}{ll}
\max & \sum_{k \in K} n^{k} \sum_{a \in A^{k}} p_{a}^{k} \\
\text { s.t. } & \sum_{a \in A^{k}}\left(c_{a}^{k} x_{a}^{k}+p_{a}^{k}\right)+c_{o d}^{k} y^{k} \leq T_{b}+c_{b}^{k}, \quad \forall k, b \\
& \sum_{a \in A^{k}}\left(c_{a}^{k} x_{a}^{k}+p_{a}^{k}\right)+c_{o d}^{k} y^{k} \leq c_{o d}^{k}, \quad \forall k \\
& \sum_{a \in A^{k}} x_{a}^{k}+y^{k}=1 \quad \forall k \\
& p_{a}^{k} \leq M_{a}^{k} x_{a}^{k} \quad \forall k, a \\
& T_{a}-p_{a}^{k} \leq N_{a}\left(1-x_{a}^{k}\right) \quad \forall k, a \\
& 0 \leq p_{a}^{k} \leq T_{a} \quad \forall k, a \\
& x_{a}^{k}, y^{k} \in\{0,1\}
\end{array}
$$

ULB

PPP: MIP formulation

- Strengthening $\sum_{a \in A^{k}}\left(c_{a}^{k} x_{a}^{k}+p_{a}^{k}\right)+c_{o d}^{k} y^{k} \leq T_{b}+c_{b}^{k} \Rightarrow$ facet and divides gap by 2
- LP-relaxation(strengthened formulation) = ideal formulation for one commodity

ULB

PPP: gap
 (Violin, 2014)

20-90 arcs
 20-90 commodities

ULB

PPP: computing time

ULB

RECAAD

ULB

RECBAD

ULB

RECBAD

ULB

Conclusion

- Bilevel model: rich framework for pricing in network-based industries.
- Models: theoretically and computationally challenging.
- Need to exploit problem's inner structure.
- Analysis of basic model: relevant and useful for attacking real applications.
- Integration of real-life features (congestion, market segmentation, dynamics, uncertainty...).
- Investigate variants of product pricing: rank pricing, single minded customers, bundle pricing, etc. See my Google page.

ULB

