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Multiagent coordination

Design Challenges Part] |
How does the lack of information
Transcription degrade achievable performance?
Policy generation Part Il

How do you optimize collective
performance using available information?

What information does @ have?
o (5, 2 & planned paths?
o location?

® |ocalized board info?

What should @ do with this information?
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design of admissible control algorjthms that attain
ystem-wide behavior in eriod of time

Sensor coverage

submodularity
(diminishing returns)

(many engineering problems are submodular)
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Submodularity

Setup:

o Elements: E 7R\

o Welfare function: W :2¥ S R

e Nomalized: W () =0
o Monotone: W (A)<W(B), VACBCE
* Submodular: Forany AC BC FE, x € E\ B

W(AU {z}) — W(A) > W(BU {z)}) — W(B)

marginal gain adding marginal gain adding
X to "smaller” set A X to “larger” set B

Note: We will refer to such as function as merely submodular
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Multiagent setup

Setup:

R
o Elements: i 7\

o Submodular function: W : 2F¥ S R

Multiagent Setup:

o Agentss N =1{1,2,...,n}

o Choices: r, € X; C2¥

o Evaluation: W (xq,...,x2,)=W(x1U---Uzxy,)
Example: Coverage

® Agents: Sensors

¢ Choices: Local coverage area

¢ Evaluation: Joint coverage quality



Multiagent setup

submodularity - greedy algorithm

W (greedy algorithm)

>
W (best centralized) —

1
2

Setup:
o Elements: E
o Agents: N={1,2,...,n}
o Choices: z; € X; C 27

o Submodular function: W :2F S R



Greedy algorithm

submodularity - greedy algorithm

W (greedy algorithm)
W (best centralized)

1
> _
2

e Agents make selections according to order (indices)
o Information: Available information to each agent 2 = X1,...,T;_1
e Selection rule: Maximize marginal contribution given information

r; € argmax W(x,,x1,...,2;—1) — W(x1,...,2;_1)
CIZZJEXZ
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Goal Objective
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agent 1 agent 2
P o

" Greedy = 11
d 4
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Greedy algorithm

agent 1 agent 2
‘/@ /@ Greedy = 11
III III Optimal = 19
LEFT MIDDLE RIGHT

W (greedy algorithm) 11 -
W (best centralized) 19 —

1
2

bound holds irrespective of number agents,
assigned order, boxes, values, action sets, etc
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Greedy Algorithm

e Agents make selections according to order (indices)
o Information: Available information to each agent ¢ = Z1,...,ZT;_1

o Selection rule: Maximize marginal contribution given information

r; € argmax W(x,,x1,...,2;_1) — W(x1,...,2,_1)
r. €X;

Questions:

e What happens if agents do not have all information needed?



Localized greedy algorithm

Information Graph G i knows z;

o Nodes: Agents O »O

¢ Edges: Informational availability 2 J

B. Gharesifard and S. L. Smith. “Distributed submodular maximization with limited information,” 2017



Localized greedy algorithm

Information Graph G i knows z;

o Nodes: Agents O »O

¢ Edges: Informational availability 2 J

O O *O {©,
1 3 4 5

m\

information graph for standard greedy algorithm

B. Gharesifard and S. L. Smith. “Distributed submodular maximization with limited information,” 2017



Localized greedy algorithm

Information Graph GG

¢ Nodes: Agents

¢ Edges: Informational availability

7 knows x;

O O

2 J
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Localized greedy algorithm

r1 € argmax W (x})
$/1€X1

ro € argmax W(xh, x1) — W(xq)
33/2€X2

r3 € argmax W (x5, 21, x2) — W(x1,22)
ZIJéEXg

x4 € argmax W (x),xa,x3) — W(wa,z3) (does nothave accessto 1)
x) € X4




Localized greedy algorithm

How does the structure of the information graph
impact the quality of the localized greedy solution?




Main result

Theorem [Grimsman et al., 2018]

Consider any submodular multiagent optimization problem with an
Information graph G. The quality of the localized greedy solution satisfies

W(ngreedy; G) 1
: >
W(zoptlmal) — 14+ C(*(G)

where ™ (G) is the (fractional) independence number of the graph G.
Furthermore, the bound is essentially tight.

Grimsman et al., “Value of Information in Greedy Submodular Maximization,” TCNS, 2019.
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Grimsman et al., “Value of Information in Greedy Submodular Maximization,” TCNS, 2019.
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Grimsman et al., “Value of Information in Greedy Submodular Maximization,” TCNS, 2019.
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Greedy Algorithm
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o Information: Available information to each agent ¢ = Z1,...,ZT;_1

o Selection rule: Maximize marginal contribution given information
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e What happens if agents do not have all information needed?



Selection Rule

Greedy Algorithm

e Agents make selections according to order (indices)
o Information: Available information to each agent ¢ = Z1,...,ZT;_1

o Selection rule: Maximize marginal contribution given information

/
r; € argmax Wix,,x1,...,2,.1) — W(x1,...,2;_1)
r. €X;
Questions:

e What happens if agents do not have all information needed?

e How do you capitalize off strategic information exchange?



Strategic Information Exchange

constrained

/ \ communication

canonly transmit X1 O L2 O I3

Grimsman et al., “Strategic Information Sharing in Greedy Submodular Maximization,” CDC, 2018.



Strategic Information Exchange

constrained

/ \ communication

canonly transmit X1 O L2 O I3

What information should agent 3 transmit to agent 47

Grimsman et al., “Strategic Information Sharing in Greedy Submodular Maximization,” CDC, 2018.



Strategic Information Exchange

constrained

/ \ communication

canonly transmit X1 O L2 O I3

What information should agent 3 transmit to agent 47

How should agent 4 utilize the transmitted information?

Grimsman et al., “Strategic Information Sharing in Greedy Submodular Maximization,” CDC, 2018.
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Selection Rule

Greedy Algorithm
e Agents make selections according to order (indices)
 Information: Available information to each agent ¢ = Z1,...,Z;_1
e Selection rule: Maximize marginal contribution given information

r; € argmax W(x,,x1,...,2;_1) — W(x1,...,2;_1)
.CL’,/I;EXi

Questions:

e What happens if agents do not have all information needed?
e How do you capitalize off strategic information exchange?

e (Can alternative selection rules yield improved performance guarantees?



Selection Rule

acyclic graphs

optimal selection rule

Selection rule: Maximize marginal contribution given information

r; € argmax Wz, x1,...,x;_1) — W(x1,...,1;_1)
ZB,’LEXZ

(equivalent to maximizing system-level objectives given information)
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Selection Rule

/.Q><:Q \:Q
1 2 3 4

cyclic graphs
(rest point of round robin greedy)

no longer optimal selection rule

Selection rule: Maximize marginal contribution given information

r; € argmax W (xz’, x1Xxi_1) —Wixq,...,2i_1)

CU;EXz

Agents optimizing global objective NOT an optimal strategy!!!!



Selection Rule

cyclic graphs
(rest point of round robin greedy)

performance gains >30% by switching selection rule

Ramaswamy et al., “Multiagent Coverage Problems:
The Trade-offs Between Anarchy and Stability,” 2019 (in review).
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Model: Set covering

Setup:
e Resources: R
o \Values: vy > 0
o Actions: X, C2% ieN
o Global Welfare: W (x) = Z Uy

relx;

) @)
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M. Gairing, “Covering Games: Approximations through Non-Cooperation”, 2009
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Setup:
e Resources: R
o \Values: vy > 0
o Actions: X, C2% ieN
o Global Welfare: W (x) = Z Uy
relx;
féG\} €5
2 7
5 2

M. Gairing, “Covering Games: Approximations through Non-Cooperation”, 2009
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Model: Set covering

Setup:

e Resources: R

o \Values: vy > 0

o Actions: X, C2% ieN

o Global Welfare: W (x) = Z v = 22

relx;
2 2 W
0 2

redundancy not : )
double counted
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Solutions: Equilibrium to “designed” utility functions
Utility functions:
e Structure: Ui(zs,2—i) = »  vr - f(|zlr)

rex;

o Divisionrule:  f:{0,1,...,n} > R

|, = number agents choose r in allocation a

M. Gairing, “Covering Games: Approximations through Non-Cooperation”, 2009
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Model: Set covering

Solutions: Equilibrium to “designed” utility functions
Utility functions:
e Structure: Ui(zs,2—i) = »  vr - f(|zlr)

rex;

o Divisionrule:  f:{0,1,...,n} > R

2 U=2-f(2)+8- f(1)

M. Gairing, “Covering Games: Approximations through Non-Cooperation”, 2009



Model: Set covering

Solutions: Equilibrium to “designed” utility functions
Utility functions:
o Structure: Ui(zs,2—i) = »  vr - f(|zlr)

TCXx;

e Divisionrule: ( f:{0,1,...,n} - R

“optimal” design?

M. Gairing, “Covering Games: Approximations through Non-Cooperation”, 2009
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game
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o Actions: X, C2% ieN
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relax;
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Model: Set covering

Setup:
e Resources: R
game
¢ Values: Uy = 0 G
o Actions: X, C2% ieN
o Global Welfare: W(z) = Z Uy

relax;
Design elements:

o Utility functions: Us(ws,x—5) = ) vy - f(|a]y)

rex;

¢ Divisonrule:  f:{0,1,....,n} > R

@ ’ gamé
Performance measures:

. W ne
* Price of anarchy (pessimistic) PoA(Gy) = gg@ {xﬂ%leng { W((;opt)) }}




Model: Set covering

Setup:
e Resources: R
game
¢ Values: Uy = 0 G
o Actions: X, C2% ieN
o Global Welfare: W(z) = Z Uy

relax;
Design elements:

o Ultility functions: U, (x;,x_;) = Z vy - f(|z|,) @-‘Ofgamé
rex;

¢ Divisonrule:  f:{0,1,....,n} > R

Performance measures:

. W ne
* Price of anarchy (pessimistic) PoA(Gy) = gg@ {xﬂ%leng { W((;opt)) }}

e Price of stability (optimistic): ~ PoS(G;) = min {max { W (z"°) }}

GeGs | zrecG W(xopt)
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Design methodologies

Goal: Design division rule f to optimize efficiency of resulting Nash equilibria

Design #1: Equal share (Shapley value)

1

- PoA(G;) = 1/2

k e
Po

Design #2: Marginal contribution

(k) =

f(1)=1 PoA(Gy) = 1/2

~~
VR
(\)
N—"
|
|
~~
N\
S
N——"
|
-
Py
—
p

= =
W N
~ —
I n
OO -

Equivalent to setting U, (z) = W (x)
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Design #1: Equal share (Shapley value)

(k) = % PoA(G;) = 1/2
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Dim1 @
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M. Gairing, “Covering Games: Approximations through Non-Cooperation”, 2009
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Design methodologies

Goal: Design division rule f to optimize efficiency of resulting Nash equilibria

~— { price of anarchy?

Design #1: Equal share (Shapley value) price of stability?

PoA(Gy) =1/2
PoS(Qf) =1/2

Fk) =+

Design #2: Marginal contribution

f(1)=1 r PoA(Gy) = 1/2

f@ = =fm=0 PO N Tradeo

Design #3: Gairing’s rule

o) = (k=1

kPoS(Qf) =1 — 1/6

r N
PoA(Gs) =1—-1/e~ 0.63

.
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Achievable efficiencies

Best Centralized Algorithm

NOT
ACHIEVABLE

Price of Stability

0.5 0.55 0.6 0.65 0.7 0.75
Price of Anarchy

Main Result: Inherent tension between price of anarchy and price of stability
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Multiagent coordination

“centralized” PoS =1
PoA=1-1/e

two main driving factors in inefficiency

decision-making architecture
decision-making process

improving performance guarantees
requires changing architecture

PoS=1—-1/e
“distributed” PoA=1-1 / e
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Beyond set covering

Setup:
e Resources: R
o \Values: vy > 0
o Actions: X, C2% ieN
o Global Welfare: W (x) = Z VU Wi(x) = Z W.(lz|)

relx; r

Design elements:

o Utility functions: Us(ws,x—5) = ) vy - f(|a]y)

rex;

¢ Divisonrule:  f:{0,1,....,n} > R

Main Results: [Paccagnan, Chandan, JRM, 2019]
o Systematic approach (LP) for characterizing POA for { (W, fr) : r € R}

o Systematic approach (LP) for optimizing POA for { (W5, foPY i r e R}



Multiagent coordination

Central Goal

design of admissible control algorithms that attain
near-optimal system-wide behavior in a reasonable period of time

Part I

How does lack of information - How do you optimize collective
degrade achievable performance? performance using information?




Thank you

Highlighted papers:

e D. Grimsman et al., “Value of Information in Greedy Submodular Maximization,” TCNS, 2019.

¢ D. Grimsman et al., “Strategic Information Sharing in Greedy Submodular Maximization,” CDC, 2018.

¢ \/. Ramaswamy et al., “Multiagent Coverage Problems: The Trade-offs Between Anarchy and Stability,” 2019
(in review).

e D. Paccagnan, R. Chandan, & JRM, “Distributed Resource Allocation Through Utility Design - Part I:
Optimizing the Performance Certificates via the Price of Anarchy,” 2019 (in review)

e D. Paccagnan & JRM, “Distributed Resource Allocation Through Utility Design - Part II: Applications to
Submodular, Supermodular, and Set Covering Problems,” 2019 (in review)

Relevant Papers:

e B. Gharesifard and S. L. Smith, “Distributed submodular maximization with limited information,” TCNS, 2017.

¢ JRM, “The role of information in distributed resource allocation” TCNS, 2017.

e G. Qu et al., “Distributed greedy algorithm for mulit-agent task assignment problem with submodular utility
functions,” 2017.

¢ B. Mirzasoleiman et al., “Distributed submodular maximization: Identifying representative elements in
massive data,” 2013.
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KT heorem [Grimsman et al., 2018] \

Consider any submodular multiagent optimization problem with strategic
Information exchange / processing over a series of m disconnected
cliques. The optimal information exchange / processing satisfies

W(xs—greedy) - 1 . 1
Wiaortm®) = 24 30 e (U= Vwy) -~ ot

K Furthermore, the bound is essentially tight. j

Grimsman et al., “Strategic Information Sharing in Greedy Submodular Maximization,” CDC, 2018.
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Theorem [Grimsman et al., 2018]

Consider any submodular multiagent optimization problem with strategic
Information exchange / processing over a series of m disconnected
cliques. The optimal information exchange / processing satisfies
W(ms—greedy) 1 1
W optimal > m—1 1 > 1
( ) T2+ [[;1(1=1/w;) M

Furthermore, the bound is essentially tight.

Grimsman et al., “Strategic Information Sharing in Greedy Submodular Maximization,” CDC, 2018.



Strategic Information Exchange

_— W (a8, G) _ 1
O O O O W(xoptimal) — §
T, W (2ol G) 1
O O O O W(xoptimal) — §

Theorem [Grimsman et al., 2018]

Consider any submodular multiagent optimization problem with strategic
Information exchange / processing over a series of m disconnected
cliques. The optimal information exchange / processing satisfies
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W optimal > m—1 1 > 1
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Furthermore, the bound is essentially tight.

Grimsman et al., “Strategic Information Sharing in Greedy Submodular Maximization,” CDC, 2018.
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Theorem [Grimsman et al., 2018]

Consider any submodular multiagent optimization problem with strategic
Information exchange / processing over a series of m disconnected
cliques. The optimal information exchange / processing satisfies
W(ms—greedy) 1 1
W optimal > m—1 1 > 1
( ) T2+ [[;1(1=1/w;) M

Furthermore, the bound is essentially tight.

Grimsman et al., “Strategic Information Sharing in Greedy Submodular Maximization,” CDC, 2018.



