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Well known facts about congestion games

1. Learning dynamics such as Multiplicative Weights Updates
(MWU) in congestion games converge to Nash equilibria.

2. Nash equilibria are near optimal (Price of Anarchy is small) =
= Via (A, p)-smoothness arguments regret-minimizing
learning algorithms have near optimal time-average
performance.



Stress tests for congestion games

1. Learning dynamics such as Multiplicative Weights Updates
(MWU) in congestion games converge to Nash equilibria. In
games with many agents, the dynamics can cycle or
become chaotic.

2. Nash equilibria are near optimal (Price of Anarchy is small) =
= Via (A, pt)-smoothness arguments regret-minimizing
learning algorithms have near optimal time-average
performance. Convergence to near optimal performance can
be rather slow in games with many agents. Practical
performance can be bad even with PoA=1.
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Chaos is robust and emerges even for two parallel links and linear
cost functions.



Congestion games

Congestion games are a class of games in game theory first
proposed by Rosenthal in 1973. In a congestion/routing game each
player chooses as a strategy path in a graph (set of edges). The
cost of each player depends

P on the resources he chooses
» and the number of players choosing the same resource.

Edges e.g.correspond to different driving routes.



Congestion games

A congestion game is defined by the tuple (N; E; (S;)ien; (Ce)ecE)

> N set of players

> E set of edges/facilities/ bins

» S; C 2% the set of strategies of player i

> c.:{1,...,N} — R* cost function of edge e (increasing

function)

For any state s = (s1,..., SN)

» [.(s) number of players that use edge e

> ci(s) = e, Celle) the cost function of player using path s
Each player aims at minimizing his cost.
There exists a (potential) function & = Y, Zﬁ;(f) ce(l), which at
each state s captures the deviation incentives for all agents:
D(s4,5-4) — P(s, 5-i) = ci(si,5-i) — ci(sh,5-4) Vsi,5-, € 5;
The (local) minima of ® are Nash equilibria.



Congestion games

A congestion game is defined by the tuple (N; E; (Si)ien; (Ce)ecE)

» Nc RT the total system demand

» F set of edges/facilities/ bins

» S; C 2% the set of strategies of player i

» c.:RT — R cost function of edge e (increasing function)
For any state s = (s1,...,Sn)

» [.(s) total flow of players that use edge e

> ci(s5) = Y ees, Celle) the cost function of player using path s

Each player aims at minimizing his cost.
There exists a convex (potential) function ® = 3", féf"(s) ce(l)dl.
The (global) minima of ® are Nash equilibria.



Price of Anarchy

Price of Anarchy (Koutsoupias, Papadimitriou '99)
The price of anarchy of a game is the ratio of social cost in the
worst case scenario (assuming players are selfish) divided by the
social cost of the optimum state:
sup SC(z)

Nash Eq.
PoA= ————

¢ min SC(x)

where the social cost of a state SC(x) is the sum of costs of
agents.

For non-atomic congestion games with linear cost functions
PoA < 4/3. (Roughgarden, Tardos '00)

For atomic congestion games with linear cost functions
PoA < 5/2. (Koutsoupias, Christodoulou '05)



Price of Anarchy decreases with many agents!

» (Feldman et al. '16) Stronger PoA bounds are possible in
games with many agents. Specifically, even in the case of
atomic congestion games, the better non-atomic bounds apply
(i.e. 4/3 instead of 5/2 for linear congestion games).

» Under extra assumptions, in the heavy traffic regime
PoA — 1. (Colini-Baldeschi et al. '16-'17)



Simple game: Two parallel links

> agents have two available strategies 71 = {e1}, 72 = {e2}

» their cost functions ¢, (1) =1, ¢, (l) =1 depend on number

(part of the flow) of players using edge/strategy e; and e
respectively.

Atomic game N = 2, PoA= 3/2.
Atomic game N = 2K, PoA= 1+1/N.
Non-atomic game N, PoA=1.

Intuitively, atomic games look like non-atomic as the effects of a
single agent become negligible.



Is the large population limit is enough for optimal

performance?

We will study the effects a simple non-atomic congestion game
with total demand N, two parallel links and linear cost functions
where all agents/flow update their behavior with the same simple
learning rule.

» PoA reduction comes at the cost of destabilizing the system.
Equilibrium is optimal, but learning it is trickier!

P Every system has a carrying capacity Ny, above which
dynamics is non-equilibrating.

» By increasing the total demand, we can prove that the system
eventually becomes chaotic, invalidating the PoA predictions
of near-optimal system performance.



Multiplicative Weights Update

A distribution for a player having the set of strategies S, is
maintained on a certain set, and at each step the probability
assigned to action v is multiplied by (1 — £)°(), where ¢(7) is a
cost of the action v € S, € € (0,1) is learning rate

(1 — 5)67('5)

Y py(t)(1—e)®
y'es

pv(t +1) = Pv(t)

MWU is the discrete time variant of replicator dynamics.
It is known to have good properties from the perspective of online
optimization.



We compare the expected reward of an algorithm to the reward
incurred by the best fixed action in hindsight.

Definition
Fix cost vectors c1,...,cp. The (expected) regret of the
(randomized) algorithm A choosing actions according z1, ...,z is

T T

Z Es, s, cn(sy) —min cn(s). (1)

seS
t=1 =
our algorithm best fixed action

The regret of MWU with parameter € given any sequence of costs
Cly...,Cr €10,1]™ is at most € x T'+ In(m)/e.

In the case of two actions, m = |S| = 2, the regret of MWU is at
most € * T+ In(2) /e.



Full model: Simple congestion game + MWU(e)

Non-atomic congestion game with two edges e, eo and total
demand M.

» All agents update their probability distribution (x,1 — z) using
MWU with fixed learning rate ¢. Total flow on e is Nz,
whereas on ey it is N(1 — z).

» Cost functions are linear functions c., (1) = al, ¢, (1) = Sl
where [ is part of the flow (players) using edge/strategy e;
and eg respectively.




One dimensional dynamical system due to MWU applied

on a simple congestion game

Dynamics which MWU generates can be described by
fap: [0,1] = [0,1], where

fa,b(x) = T+ (1 — x) exp(a(x - b))7

with @ > 0,b € (0,1), and

a:(a—i—ﬁ)Nln(lig), b:aﬁﬂ.



Dynamics introduced by the MWU algorithm

Dynamics which MWU generates can be described by
fap:[0,1] = [0,1], where

r+ (1 —2)exp(a(z — b))’

fa,b(ﬁ):
with @ > 0,b € (0,1), and
1
alen(), b=p
1—¢

with o+ 3 = 1.



Transformation f,;

a=8,b=1/2

02 04 08 08 o

a=8,b=1/3

02 04 08 08 o

a=16,b=1/2
10f
08
06
04
02
02 04 [ 08 o
a=16,b=1/3




Fully symmetric case — same cost functions

Theorem
Let ce; = ce,, that is b = %
1. If0 < a < 8 then f, 1/2-trajectories of all points of (0,1)
converge to the fixed point 1/2 (Nash equilibrium).

2. Ifa > 8 then f, 1,5 has a periodic attracting orbit
{pas1 — pa}, where 0 < p, < 1/2. This orbit attracts
trajectories of all points of (0, 1), except countably many
points, whose trajectories eventually fall to the repelling fixed
point 1/2.



Fully symmetric case — same cost functions

Theorem
Let ce; = ce,, that is b = %
1. If0 < a < 8 then f, 1/2-trajectories of all points of (0,1)
converge to the fixed point 1/2 (Nash equilibrium).

2. Ifa > 8 then f, 1,5 has a periodic attracting orbit
{pas1 — pa}, where 0 < p, < 1/2. This orbit attracts
trajectories of all points of (0, 1), except countably many
points, whose trajectories eventually fall to the repelling fixed
point 1/2.

Proof hint: By Sharkovsky's theorem any discrete dynamical
system f :[0,1] — [0, 1] where f is a continuous function if it does
not have a periodic point of period 4 it only has fixed points and
periodic points of period 2. By symmetries of f, 1/, we can argue
that every initial condition either converges to a fixed point or a
periodic orbit of period 2. When a > 8 the Nash equilibrium
becomes unstable.



Broken symmetry — cost functions are different

What about asymmetric case, when cost functions are different???

CHAOS




The route to chaos
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o




Chaos for the interval map

Li-Yorke chaos
Let (X, f) be a dynamical system and (z,y) € X x X. We say
that (z,y) is a Li-Yorke pair if

i dist(" () £ (0)) = 0,
limsup dist(f"(z), f"(y)) > 0.

A dynamical system (X, f) is Li-Yorke chaotic if
there is an uncountable set S C X (called scrambled set) such
that every pair (z,y) with 2,y € S and = # y is a Li-Yorke pair.



Topological entropy for maps

For each natural number n, a new metric d,, is defined on
X =[0,1] by the formula

dy(x,y) = max{d(f'(z), f'(y)) : 0 < i < n}

Given any § >0 and n > 1, two points of X are §-close with
respect to this metric if their first n iterates are J-close.

A subset E of X is said to be (n,d)-separated if each pair of
distinct points of E is at least 0 apart in the metric d,,.

Denote by N(n,d) the maximum cardinality of an (n,d)-separated
set. The topological entropy of the map f is defined by

h(f) = lim (limsup % log N(m, d))

6—0 " nooo



Different cost functions always lead to chaos for large

enough rates

Theorem
Let o B3 (i.e, b# 1), where b isthe Nash equilibrium:

» Fora € (0,4) Every trajectory converges to Nash equilibrium.

> Ifbe (0,1)\{1/2}, then there exists ay such that if a > ay,
then fq has periodic orbits of all periods, positive topological
entropy and is Li-Yorke chaotic.



The route to chaos

1o
T
o




Average behavior — like in zero-sum games

For an interval map f a point p is Césaro attracting if it has a
neighborhood U such that for every x € U the averages

1 n—1
n Z fk(l")
k=0
converge to p.

Theorem
For every a >0, b € (0,1) and x € (0,1) the Nash equilibrium b is
Césaro attracting for fg .



Corollaries

Corollary
For every periodic orbit {xo,21,...,Tn—1} of fop in (0,1) its
center of mass (time average)

To+ 21+ + Tp—1
n

is equal to b.
Corollary

For every probability measure p, invariant for f,; and such that
1({0,1}) =0, we have

/ x du =b.
[0,1]



Game theoretic implications

We know that )

a:Nln(l), b=p

To simplify calculations we put e =1 — % then a = N.

a — the (normalized) system demand
b — (normalized) equilibrium flow.

Corollaries

» If an interior equilibrium is not 50% — 50% split, increasing
the total demand of the system will inevitably lead to chaotic
behavior, regardless of the form of the cost function.

> Time-average flows on the edges converge exactly to
equilibrium values — a property akin to no-regret learning in
Zero-sum games.

And what about regret and social costs?



Regret and variance

Regret in our case:

T
:Z (aNz2+BN(1—x,)? mm{z aNmn,ZﬂN 1—ay)}

n=1 n=1

Theorem
The time-average regret is the total demand N times the variance
of the variable x, = f"(x)



Time-average social cost and variance

T
1 2
Var(X) = Thm = Z(wn —b)
n=1
We can relate the normalized time-average social cost to the
variance. We have

time-average social cost

norm. time-average soc. cost = - -
optimum social cost

7 Lot (@N?a7 + BN (1 — 20)?)

N2ap
_ F Yoy (22— 2Bay + )
Bl —p)

B Var(X)
)



Upper bound for variance

Remark
The variance is bounded above by

T
Var(X) = Tlgréo (111 Z(xn - b)2> S (fmax - b)(b - fmin)-
n=1

where fmax, fmin the largest and smallest respectively value of the
map at its critical points.



Regret, social cost and chaos
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Extensions and problems

Extensions

P> More strategies
» Heterogeneous case with two different learning rates

» Different dynamics



Extensions and problems

Extensions

P> More strategies
» Heterogeneous case with two different learning rates

» Different dynamics

Problems

» Provable chaos in other games (e.g. zero-sum games)?
» Variance of the interval map (even for the logistic map)

» Lower bound for regret (variance), sensitive dependence on
parameters?



Upper bound

Figure: Attractor (cyan) and average regret (white) with the bound
(yellow) for b = 0.61, a € (4,54)




Upper bound

Figure: Attractor (cyan) and average regret (white) with the bound
(yellow) for b = 0.62, a € (4,54)




Upper bound

Figure: Attractor (cyan) and average regret (white) with the bound
(yellow) for b = 0.90, a € (4,54)




Proper upper bound

Figure: Attractor (cyan) and average regret (white) with the bound
(yellow) for b = 0.96, a € (40, 190)




Proper upper bound

Figure: Average regret for b = 0.96, a € (40, 190)




Proper upper bound: b = 0.96 zoom




Thank you!



