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Introduction

Mean Field Interaction and Optimization

In a system with mean field interaction, compare the optimal strategy of
the system with the optimal strategy of the mean field limit.

Mean field interaction results in an aggregate information that may be
harmful for efficient optimization.

This tension (information - optimisation) can be seen in centralized
optimization as well as in games.

In the general case, this tension may lead to coarse results.

Interesting examples lie out of these general cases.
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Mean Field Markov Decision Process

Part 1: Mean Field Markov Decision Processes
We consider a Markovian system composed of N objects. Each object lives
in a finite set S = {1 . . . S}.
The state of the system at time k is XN(k) :=

(
XN
1 (k) . . .XN

N (k)
)

, with

transition P
For all i ∈ S, MN(k) the empirical distribution of the objects at time k:

MN(k) :=
1

N

N∑
n=1

δXN
n (k),

At every time k , a centralized controller chooses an action AN(k) ∈ A
where A (compact).

Exchangeability: Objects are exchangeable (σ−1Pσ = P) and only
observable through their states.

This implies that MN() is a controlled Markov chain.
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Mean Field Markov Decision Process

Drift, Value Function, Policies

For every k, a policy πk is a function P(S)→ A. Let MN
π (k) be the state

distribution at time k under π. r(m, a) is the reward under distribution m
and action a.
The value of a policy π over the horizon [0;HN ] starting from m0 is

VN
π (m) := E

( HN−1∑
k=0

r(MN
π (k), π(MN

π (k)))
∣∣∣MN

π (0) = m
)
.

The goal of the controller is to find an optimal policy that maximizes the
value. We denote by VN

∗ (m) the optimal value when starting from m:

VN
∗ (m) = sup

π
VN
π (m)
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Mean Field Markov Decision Process

Mean Field Limit
The drift FN(m, a) is:

FN(m, a) = E
(
MN(k + 1)−MN(k) | MN(k) = m,AN(k) = a

)
.

Assume
∥∥∥NFN(m, a)− f (m, a)

∥∥∥→ 0, unif. in m and a (can be relaxed).

Limit system: Action function α : [0;T ]→ A is piecewise Lipschitz
continuous.

m(t) = m(0) +

∫ t

0
f (m(s), α(s))ds = φt(m0, α) (1)

vα(m0) :=

∫ T

0
r (φs(m0, α), α(s)) ds (2)

The optimal value of the deterministic limit system v∗(m0):

v∗(m0) = sup
α

vα(m0), (3)

where the supremum is taken over all action functions from [0;T ]→ A.
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Mean Field Markov Decision Process

Convergence to the Mean Field Limit

If r and f are Lipschitz continuous then,

Theorem (convergence of the value)

lim
N→∞

VN
∗

(
MN(0)

)
= v∗ (m0) when MN(0)→ m0

Theorem (Asymptotically Optimal Policy)

If α∗ is an optimal action function for the limiting system and if
lim

N→∞
MN(0) = m0 almost surely [resp. in probability], then we have:

lim
N→∞

∣∣∣VN
α∗ − VN

∗

∣∣∣ = 0,

almost surely [resp. in probability].
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Mean Field Markov Decision Process

Sketch of the proof

We construct 2 auxiliary systems:

The random flow φt(m0,A
N
π ), driven by policy π.

the Markovian system MN
α , driven action function α.

Using the first system, Ev(AN
π∗) ≤ v(α∗)

One can show that VN
π∗ − Ev(AN

π∗)→ 0 (Kurtz’s result)
This implies limVN

π∗ ≤ v(α∗).

Using the second system, VN
α∗ ≤ VN

π∗ .
One can show that v(α∗)− VN

α∗ → 0.
This implies limVN

π∗ ≥ v(α∗)
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Mean Field Markov Decision Process

Convergence rate to the Mean Field Limit

Theorem

for any action function,

√
N
(
MN
α (t)−mα(t)

)
Law−−→ Gt .

Gt is Gaussian.

Theorem

There exists β > 0 s.t.

√
N
∣∣∣VN
∗ (m0)− v∗(m0)

∣∣∣ ≤ β + o(1).
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Mean Field Markov Decision Process

Conclusion I

As N grows, policies that do not take into account the state of the system
(i.e. open loop) are asymptotically as good as adaptive policies (closed
loop).

This result does not hold in general for long run average costs, even if the
mean field limits under all actions have the same global attactor.
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Repeated Games with Anonymous Players

Part 2: Repeated Games with Random Outcomes
Consider the model investigated by Green (1980) and Sabourian (1990).
Several similar results exist (Al-Najjar, Smorodinsky, 2001) with variations
on the interactions between players.

A repeated game H∞ = (K ,A,X ,F , δ, r).

K is the set of players,
A is the set of strategies,
X the set of outcomes,
Random outcome distribution F (a) ∈ P(X )
0 < δ < 1 is the discount factor,
The stage reward of player k is rk(ak , x) (bounded)

The stage expected reward for player k is Rk(a) =

∫
X
rk(ak , x)dF (a)(x).

Total reward for player k: E
∞∑
t=0

δtrk(ak(t), x(t))
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Repeated Games with Anonymous Players

Anonymous Players

Players are anonymous implies the diagram commutes:

P(X )
F

Gemp

P(A)

A

Main assumption for the following result to hold: The function G is
continuous if P(A) is endowed with the weak topology and P(X ) with the
total variation norm.
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Repeated Games with Anonymous Players

SPE is ε-Nash

Theorem (Sabourian, 1990)

For any ε, ∃N s.t. ∀ repeated game H∞ with K ≥ N anonymous players,
any SPE s is such that st(ht) is an ε-equilibirum of H, for all histories ht .

Proof sketch: Let s be an SPE, ãk any action, s ′ = ((ãk , s
0
−k), s1).

Er∞k (s) = Rk(s0) +

∫
X
Vk(s(1), x)dF (s0)(x)

Er∞k (s ′) = Rk(ãk , s
0
−k) +

∫
X
Vk(s ′(1), x)dF (s ′0)(x)

Since Er∞k (s) ≥ Er∞h (s ′), then

Rk(ãk , s
0
−k)− Rk(s0) ≤

∫
X
Vk(s(1), x)dF (s0)(x)−

∫
X
Vk(s ′(1), x)dF (s ′0)(x)(4)

≤ W

∫
X
|dF (s0)(x)− dF (s ′0)(x)|. (5)

This is the TV distance between outcome measures. M(s ′0) and M(s0) are
close for the weak norm when N grows, so the TV distance is also small.
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0
−k) +

∫
X
Vk(s ′(1), x)dF (s ′0)(x)

Since Er∞k (s) ≥ Er∞h (s ′), then
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Repeated Games with Anonymous Players

Conclusion II

As N grows, All SPE are ε-greedy at each time t, under mean field
interaction and continuity of the signals.

Mean field games combine the two previous models: Large number of
players and Markovian evolution.
The continuity assumption on G does not hold for mean field games under
the natural construction, given below.
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Discrete Mean Field Games

Part 3: Discrete MFG: Dynamic Population Game
State and action sets E = {1, . . . ,E}, A = {1, . . . ,A}
Population distribution m(t) in P(E).
Mixed strategy πi (t) in P(A).

Rate matrices Qija(m(t)) is a rate at which a player in state i moves to
state j when choosing action a, when the population distribution is m(t).
Population Evolution mπ(t) ∈ P(E) the population distribution at t,
under π.
Its evolution is similar to Mean field MDP (with explicit rate):

mπ
j (t) = mj(0) +

∫ t

0

(∑
i∈E

∑
a∈A

mπ
i (u)Qija(mπ(u))πi ,a(u)

)
du.

Explicit interactions

Qija(mπ(t)) depends explicitly on the population distribution. Other mean
field models, such as Gomes 2010, only consider the special case where
Qija(mπ(t)) = Qija. This makes the population dynamics linear.
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Discrete Mean Field Games

Cost function

Player 0 chooses her own strategy π0 : R× E → P(A).

xπ
0,π(t) ∈ P(E) is the probability distribution of Player 0 state when she

uses strategy π0 against a population who plays strategy π.
Player 0 has an instantaneous cost ci ,a(mπ(t)) in state i when using
action a.
The total discounted cost of Player 0 is

V (π0, π) =

∫ ∞
0

(∑
i∈E

∑
a∈A

xπ
0,π

i (t)ci ,a(mπ(t))π0i ,a(t)e−βt

)
dt

β > 0 is a discount factor.
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Mean Field Equilibrium

Best Response

The best response of Player 0 to π is BR(π), the strategies that minimize
her discounted cost:

BR(π) := arg min
π0∈S

V (π0, π).

Definition (Mean Field Equilibrium (MFE))

A strategy π is a mean field equilibrium if it is a fixed point for the
best-response correspondance:

πMFE ∈ BR(πMFE ).
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Mean Field Equilibrium

Existence of a MFE

The rate functions Qija(m) are Lipschitz-continuous in m.

The cost functions ci ,a(m) are continuous in m.

Theorem

Any discrete mean field game G whose rate and cost satisfy the
assumptions above admits a mean field equilibrium.

Previous existence proofs based on (strict) convexity of cia.
The best-response function π 7→ BR(π) is not hemi-continuous (BR(π)
may not be convex).

Instead, we consider a fixed point equation in m by defining
φ(m) = {xπ0∀π0 ∈ arg min

π
V (π,m)}.

V (π,m) is continuous for the weak topology implies φ is semi-upper
continuous and compact. This implies that φ has a fixed point.
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Mean Field Equilibrium

Tightness of the assumptions
If Q is not Lipschitz-continuous in m, then the evolution of the
population is not well defined: it may have several solutions or none.
There exist games with non-continuous cost functions c that do not
admit mean field equilibrium. Example:

G =

(
E = {1, 2},A = {a, b},Qa = 0,Qb =

[
−1 1
0 0

]
,m(0) = (1, 0)

ca(m1,m2) = 0, cb(m1,m2) =

{
−1 if m2 ≤ 1/2
1 otherwise

)
.

m2(t) is non-decreasing. Let τ = sup{t : m2(t) ≤ 1/2}
The best-response of Player 0 to any m(·) is policy π(τ):

Play ”b” until τ and ”a” after τ .

This cannot be a MFE: for any T , under policy π(T ),
m2(t) = 1− e−min(t,T ), so that τ = ln 2 or +∞.

π(ln 2) is the best response to π(∞) and vice-versa.
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Convergence of Finite Games to Mean Field Games

Markov Games with N Exchangeable Players

To a MFG G we associate a stochastic N-player game GN (the construction
can also be done from the N player game to the mean field limit).

In GN , Each player becomes active according to a Poisson process with
rate 1, independently of the others.
This can be extended to a set of active players R(t) whose size is bounded
in L1 and L2.
State X(t) = (X1(t) . . .XN(t)) ∈ EN is a continuous time Markov chain.
If we assume

Mean field interaction between the players.

time uniformization (with intensity N): (tn)n∈Z+ is a Poisson process
with rate N.

P (Xk(tn+1) = j |Xk(tn) = i , k = R(tn),M(tn) = m,Ak(tn) = a) =
Qija(m)

N
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Convergence of Finite Games to Mean Field Games

Costs

Given a strategy πk used by player k and a strategy π used by all the
others, V (πk , π) is the expected discounted cost of player n:

VN(πk , π) = E

∑
t∈TN

e−βtcXk (t),Ak (t)(M
π(t))

∣∣∣∣∣∣ Ak chosen w.r.t. πk

A−k chosen w.r.t. π

 .
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Convergence of Finite Games to Mean Field Games

Equilibrium of the N player game

Definition (Equilibrium of the N player game)

For a given set of strategies S , a strategy π ∈ S is called a symmetric
equilibrium in S if for any strategy πk ∈ S :

VN(π, π) ≤ VN(πk , π).

When all other players apply the strategy π, then π minimizes the
objective of the kth player over all possible strategies in S .
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Convergence of Finite Games to Mean Field Games

Subsets of Admissible Strategies
In a full information setting, Ak(t) is a (possibly random) function of all
X (t ′), and all A(t ′), t ′ < t. Such a strategy is hard to analyze. Therefore,
in the following, we will consider two natural subclasses for the set of
admissible strategies:

(Markov) – A strategy π is Markovian (and stationary) if Ak(t) is a
(possibly random) function of M(t) and X(t):

P (Ak(t) = a | Ft) = πa,Xk (t)(M(t)).

(Local) – A strategy π is a local if the strategy only depends on the
player’s internal state and on time.

P (Ak(t) = a | Ft) = πa,Xk (t)(t).

Under local strategies, the actions may depend on time, hence may
track the law of the population M(t) (but not M(t) itself). Also
notice that a local strategy is not necessarily Markovian because of its
dependence on time.
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Convergence of Finite Games to Mean Field Games

Nash Equilibria Limits

Theorem

(i) Let π be an equilibrium of G. There exists N0 s.t. ∀N ≥ N0, π is a
local ε-equilibrium of the N-player game. (Cecchin, Fisher 2017).

(ii) If (πN)N is a sequence of local equilibria for the N player game, there
is a sub-sequence that converges weakly to a mean field equilibrium of
G.

Proof: Based on Tembine, 2009 or Kolokotsov (value of local strategies
converges uniformly).
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Convergence of Finite Games to Mean Field Games

Markov Equilibria May Not Converge to MFE
Let us consider a matching game version of the prisoner’s dilemma. The
state space: S = {A,B} and A = S. Population distribution is
m = (mA,mB).
Cost of a player:

C (i , i ,m) =

{
mA + 3mB if i = A
2mB if i = B

This is the expected cost of a player matched with another player at
random and using the cost matrix:

A B

A 1, 1 3, 0

B 0, 3 2, 2

Lemma

Always playing B is the unique mean-field equilibrium.
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Convergence of Finite Games to Mean Field Games

Non-convergence of Markov strategies (II)

Let us define the following stationary strategy for N players:

πN(M) =

{
B if MA < 1
A if MA = 1.

“play A as long as my opponent plays A. Play B forever as soon as my
opponent plays B.”

Lemma

For β < 1 and any N, πN is a sub-game perfect equilibrium of the
N-player stochastic game.
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Convergence of Finite Games to Mean Field Games

Non-convergence of Markov strategies (III)

Assume all players, except player 0, use strategy πN and let us compute
the best response of player 0 to πN .

If player 0 plays A, its cost is
1

N

∞∑
i=0

e−βi/N = 1/β + O(1/N).

If player 0 chooses action B, then its cost is

∫ ∞
0

2MBe
−βtdt + O(1/N) =∫ ∞

0

2e−βt

1 + (N − 1)e−Nt
dt + O(1/N) ≥ 1/β + O(1/N).

Therefore, when β < 1, player 0 has no incentive to deviate from πN : it is
a sub-game perfect equilibrium.

Similar example over a finite horizon.
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Synchronous Case

Synchronous Case (N players)

- Each player n has an state Xk(t) ∈ E (X(t) = (X0(t), . . . ,XN−1(t)) and
chooses actions in A.
- Main difference with the asynchronous model: ∀t ∈ Z+, all players
choose an action Ak(t) ∈ A simultaneously.
- A player in state i who chooses action a goes to state j with probability
Pija(X(t)).
- Given X(t), the evolution of all players are independent.
- The players are exchangeable : for any permutation σ,
Pija(X0(t), . . . ,XN−1(t)) = Pija(Xσ(0)(t), . . . ,Xσ(N−1)(t)).
Exchangeability implies that the dependence in X(t) can be replaced by a
dependence on the population distribution M(t):

P (X(t + 1) = j|X(t) = i,A(t) = a) =
N∏

n=1

Pinjnan(M(t)),
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Synchronous Case

Corresponding Mean Field Game

mπ
j (t + 1) =

∑
i∈E

∑
a∈A

mπ
i (t)Pi ,j ,a(mπ(t))πi ,a(m(t)). (6)

We denote by π0 the strategy of player 0. The probability that Player 0 is
in state j ∈ E evolves over time according to the following equation:

xj(t + 1) =
∑
i∈E

∑
a∈A

xi (t)Pi ,j ,a(mπ(t))π0i ,a(m(t)). (7)

In this case, the cost of Player 0, becomes

V (π0, π) = (1− δ)
∞∑
t=0

∑
i∈E

∑
a∈A

δtxi (t)ci ,a(mπ(t))π0i ,a(m(t)).

Player 0 chooses the strategy that minimizes her expected cost. When
Player 0 does so, we say it uses the best-response to the mass strategy π.

BR(π) = arg min
π0

V (π0, π).

A strategy is said to be a mean field equilibrium if it is a fixed point for
the best-response function, that is,

πMFE ∈ BR(πMFE ).

Theorem (Mean Field Equilibrium Existence for Synchronous Games)

Any synchronous mean field game with discounted cost that satisfies
Assumption (A1) for P and c respectively, has a mean field equilibrium.
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Synchronous Case

An Important Special Case: Repeated Games

The state of a player is her current action (X(t) = A(t)) and the evolution
of the state becomes: Under state x = a and selecting action b, the next
state becomes b with probability one.
The folk theorem holds for anonymous players with deterministic
outcomes: any acheivable cost V ≤ V ∗ (cost a the static NE) is the cost
of a Nash equilibrium, if the discount factor β is large enough. Sabourian
results do not apply here:

F (a) = δM(a) is not continuous.

The Folk Theorem does not hold at the mean field limit: An example
similar to the one in continuous time shows that not all equilibria pass at
the mean field limit. Actually, for any V < V ∗, the equilibria whose cost is
V are based on the “tit for tat” principle. We claim that none of these
equilibria survive at the mean field limit.
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Synchronous Case

Conclusion III: Free Riders in Mean Field Games

When the number of players is infinite, the deviation of a single player is
not visible by the population. The equilibria based on punishments of one
player do not exist at the mean-field limit. In other words, mean field
games cannot fight against (informed) free riders.

This is all the more damaging because these equilibria have very good
social costs: mean-field games may fail to capture the best equilibria.

On the brighter side, Markov strategies may not be realistic (population
distribution may not be observable). A result similar to Sabourian should
hold.
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